摘要
为了提高减振性能,设计了两种基于惯容⁃弹簧⁃阻尼器结构的含放大机构的减振系统,探讨了模型在受到外部激励时的减振效果。根据牛顿第二定律建立了系统的动力学方程,并得到了其解析解,发现幅频曲线都存在独立于阻尼比的两个固定点。基于H∞和H2优化准则,分别得到了系统的最优参数,并研究了惯容质量比和放大比对模型减振性能的影响。发现在一定范围内,惯容质量比与放大比增大,幅频曲线峰值降低,两共振峰间距拉大,并通过数值仿真验证了解析解的正确性。与其他减振模型在简谐激励和随机激励情况下比较,所设计模型大幅降低了共振振幅,并且拓宽了有效频带,表明其具有更好的减振性能。
在被动减振领域中,自1909年Frah
随着对振动控制系统的深入研究,学者们发现含有惯容的减振系统具有固有频率低、承载大、减振效果优越的特点,同时可降低附加质量,实现减振系统轻量化设计。Smith教
力放大机构也已经用于减振和隔振领域。以杠杆元件为例,李春翔
然而上述减振或者隔振的研究更多侧重于数值方法和仿真,解析解的计算较少,并且将二者结合的研究也少有。本文在单自由度减振系统中附加惯容和力放大机构得到了新型减振系统,通过拉氏变换得到系统解析解,利用H∞和H2优化准则对减振模型的刚度和阻尼进行优化设计。通过在简谐激励和随机激励下与其他减振系统的比较,证明了本文模型良好的减振性能。
惯容器是剑桥大学Smith教授通过研究机械网络和电路网络之间相似性提出的,简称惯容,又称为惯性储能器或惯性质量储能器,具有两个独立的、自由的端点,产生的力与其节点之间的相对加速度成比例。

图1 滚珠丝杠惯容器原理图
Fig.1 Schematic diagram of ball-screw inerter
理想惯容器的受力关
(1) |
式中 为施加于惯容两端点等大反向的力;为惯容系数,单位为;和分别为两个端点的速度;和分别为两个端点的位移。通过设计结构形式,一般可将飞轮的转动惯量放大几十倍,这是惯容的优良特
为了叙述方便,将本文中用到的所有参数列入

图2 模型LISD
Fig.2 Models of LISDs
根据牛顿第二定律,建立以下动力学方程:
LISD1
(2a) |
LISD2
(2b) |
根据
LISD1
(3a) |
LISD2
(3b) |
将响应和正弦激励写为如下形式:
(4) |
并代入中,得出无量纲运动规律:
(5) |
式中 j为虚数单位,,分别代表LISD1和LISD2。其中:
(6a) |
(6b) |
引入参数:
(7) |
得到评定LISD系统减振性能的振幅放大因子:
(8) |
其中:
(9a) |
(9b) |
固定点理论是DVA参数优化的经典手段,通过H∞优化可以得到最优刚度比和最优阻尼比等参数。H∞优化指主系统受到外界简谐激励时,在安装减振器后,使得主系统最大振幅最小。

图3 LISD幅频曲线
Fig.3 The amplitude-frequency curves of LISDs
根据
(10) |
将代入,化简得到:
(11) |
假设两固定点的横坐标为和,则存在等式:
(12) |
可以得到:
(13) |
根据固定点理论可知,在最优频率比条件下和两点处响应值相等,即:
(14) |
从而得到:
(15) |
联立和(15)可以建立关于的方程,得到最优刚度比为:
(16) |
将最优刚度比代入并求解,求出,两点横坐标:
(17a) |
(17b) |
在最优刚度比条件下,将横坐标代入中,固定点处响应值即纵坐标为:
(18) |
由可以看出,以LISD1为例,杠杆放大比和惯质比对固定点处的响应有直接影响。在工程允许情况下,增加和,可以降低固定点处的响应。
至此已经得到了最优刚度比,同时固定点和被调整到相等的高度。为了达到最优减振效果,可以使固定点成为幅频曲线的最高点。根据极值条件可知,幅频曲线在和两点处的导数为零,即:
(19) |
在最优刚度比条件下,可以得到:
(20a) |
(20b) |
上式说明,选择其中一个值只能使幅频曲线在和中一点达到极值。因此,为了得到较好的优化效果,将两阻尼比平均值作为最优阻尼比,即:
(21) |
此时,在H∞优化下LISD1的所有最优参数已经得出。LISD2的参数推导过程与LISD1类似,参数如
在随机激励下,采用H2范数评估主系统减振效果较为合适,另一方面H2范数也代表了主系统响应的均方根值(Root Mean Square, RMS)。假设主系统以理想白噪声为随机激励,这里给出H2优化的性能指标:
(22) |
式中 代表统计平均值,代表瞬时平均值,代表功率谱密度。主系统位移的RMS可以定义为:
(23) |
将代入,性能指标可以写成:
(24) |
以LISD1为例,利用留数定理可以得到:
(25) |
其中
(26) |
令对和的偏导数为零,则有:
(27) |
由和(27)得到:
(28) |
进一步求解可得LISD1的最优刚度比和最优阻尼比。在H2优化下LISD的最优参数如
根据

图4 LISD2在H∞优化下和的关系
Fig.4 Relationship between and of LISD2 under H∞ optimization

图5 LISD2在H2优化下和的关系
Fig.5 Relationship between and of LISD2 under H2 optimization

图6 时,不同下LISD主系统幅频曲线
Fig.6 The amplitude-frequency curves of LISDs with different amplification ratios at

图7 不同下LISD主系统幅频曲线
Fig.7 The amplitude-frequency curves of LISDs with different inerter-to-mass ratios

图8 LISD中最优性能指标与的关系
Fig.8 Relationship between the optimal performance index and of LISDs
由
为了验证无量纲参数优化的正确性,这里选取,,,,和,,,分别代入

图9 LISD在两种优化方式下数值解与解析解对比
Fig.9 Comparison between numerical results and analytical solutions of LISDs under H∞ optimization or H2 optimization
为了验证LISD的减振性能,与其他经典DVA分别在H∞优化和H2优化下的结果进行了对比。这里给出其他减振模型(即文献[

图10 两种优化方式下LISD与其他减振模型对比
Fig.10 Comparison between LISDs and other vibration mitigation models under H∞ optimization or H2 optimization
从
由于在实际工程中系统所受的激励大都为随机激励,所以在随机激励下系统的响应有着很重要的意义。设该系统受到均值为零、功率谱密度的白噪声激励,则主系统绝对位移响应的功率谱密度函数为:
(29) |
而主系统位移均方值为:
(30) |
为了得到更直观的图像变化过程,构建了50 s均值为0、方差为1的随机激励,其时间历程如

图11 随机激励时间历程
Fig.11 The time history of the random excitation

图12 不含减振器的主系统时间历程
Fig.12 The time history of the primary system without vibration mitigation models

图13 Voigt式主系统时间历程
Fig.13 The time history of the primary system with Voigt DVA

图14 Ren 式主系统时间历程
Fig.14 The time history of the primary system with Ren DVA

图15 LISD1主系统时间历程
Fig.15 The time history of the primary system with LISD1

图16 LISD2主系统时间历程
Fig.16 The time history of the primary system with LISD2
由图
建立了含有惯容和杠杆元件的LISD减振器模型的刚性基础,发现幅频曲线有两个固定点。根据固定点理论和最优性能指标进行H∞与H2优化,分别推导出最优刚度比和最优阻尼比。由H∞优化下最优参数可知,LISD1中惯质比与杠杆放大比取值范围较大;LISD2中惯质比与杠杆放大比取值范围较小,但是LISD2在简谐激励下的减振效果更优。由H2优化下最优参数可知,在随机激励下LISD1减振效果更好。进一步研究表明,惯质比和杠杆放大比取值范围内越大,系统减振性能越好。通过与其他经典减振系统比较,LISD不仅显著降低主系统振动幅值与谐振频率,还可以拓宽减振系统有效频率范围。与DVA相比较,LISD对于摆脱附加吸振质量更具实际意义。
参考文献
Frahm H. Device for damping vibrations of bodies[P]. U.S. Patent 0989958, 1911.
Ormondroyd J, Den Hartog J P. The theory of the dynamic vibration absorber[J]. Journal of Applied Mechanics, 1928, 50: 9-22.
Ren M Z. A variant design of the dynamic vibration absorber[J]. Journal of Sound and Vibration, 2001, 245(4): 762-770.
Almazan J L, Llera J C D L, Inaudi J A, et al. A bidirectional and homogeneous tuned mass damper: a new device for passive control of vibrations[J]. Engineering Structures, 2007, 29 (7): 1548-1560.
赵艳影, 徐鉴. 时滞非线性动力吸振器的减振机理[J]. 力学学报, 2008, 40(1): 98-106.
Zhao Yanying, Xu Jian. Mechanism analysis of delayed nonlinear vibration absorber[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(1): 98-106.
Shen Y J, Wang L, Yang S P, et al. Nonlinear dynamical analysis and parameters optimization of four semi-active on-off dynamic vibration absorbers[J]. Journal of Vibration and Control, 2013, 19(1): 143-160.
Shen Y J, Ahmadian M. Nonlinear dynamical analysis on four semi-active dynamic vibration absorbers with time delay[J]. Shock and Vibration, 2013, 20(4): 649-663.
彭海波, 申永军, 杨绍普. 一种含负刚度元件的新型动力吸振器的参数优化[J]. 力学学报, 2015, 47(2): 320-327.
Peng Haibo, Shen Yongjun, Yang Shaopu. Parameters optimization of a new type of dynamic vibration absorber with negative stiffness[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2): 320-327.
Smith M C. Synthesis of mechanical networks: the inerter[J]. IEEE Transactions on Automatic Control, 2002, 47(10): 1648-1662.
Chen M Z Q, Papageorgiou C, Scheibe F, et al. The missing mechanical circuit element[J]. IEEE Circuits and Systems Magazine, 2009, 9(1): 10-26.
Wang F C, Chen C W, Liao M K, et al. Performance analyses of building suspension control with inerters[C].46th IEEE Conference on Decision and Control, 2007: 3786-3791.
Wang F C, Yu C H, Chang M L, et al. The performance improvements of train suspension systems with inerters[C]. Proceedings of the 45th IEEE Conference on Decision and Control, 2006: 1472-1477.
Chen M Z Q, Hu Y, Shu Z. Passive vehicle suspensions employing inerters with multiple performance requirements[J]. Journal of Sound and Vibration, 2014, 333(8): 2212-2225.
Chen M Z Q, Hu Y, Li C, et al. Application of semi-active inerter in semi-active suspensions via force tracking[J]. Journal of Vibration and Acoustics, 2016, 138(4): 041014.
Hu Y, Chen M Z Q, Shu Z, et al. Analysis and optimisation for inerter-based isolators via fixed-point theory and algebraic solution[J]. Journal of Sound and Vibration, 2015, 346(1): 17-36.
Hu Y, Chen M Z Q, Shu Z, et al. Vibration analysis for isolation system with inerter[C]. Proceedings of the 33rd Chinese Control Conference, 2014: 6687-6692.
Ikago K, Saito K, Inoue N. Seismic control of single-degree-of-freedom structure using tuned viscous mass damper[J]. Earthquake Engineering and Structural Dynamics, 2012, 41(3): 453-474.
De Domenico D, Deastra P, Ricciardi G, et al. Novel fluid inerter based tuned mass dampers for optimised structural control of base-isolated buildings[J]. Journal of the Franklin Institute, 2019, 356(14): 7626-7649.
Chen Q J, Zhao Z P, Xia Y Y, et al. Comfort based floor design employing tuned inerter mass system[J]. Journal of Sound and Vibration, 2019, 458: 143-157.
郜辉, 汪志昊, 许艳伟,等. 惯容质量对斜拉索阻尼器减振增效作用试验研究[J]. 振动工程学报, 2019, 32(3): 377-385.
Gao Hui, Wang Zhihao, Xu Yanwei, et al. Experimental study on the improving effect of inertial mass on vibration control of stay cables with dampers[J]. Journal of Vibration Engineering, 2019, 32(3): 377-385.
Zhao Z P, Zhang R F, Jiang Y Y, et al. A tuned liquid inerter system for vibration control[J]. International Journal of Mechanical Sciences, 2019, 164: 105171.
王勇, 汪若尘, 孟浩东. 一种具有几何非线性的斜置式惯容隔振器动态特性研究[J]. 振动与冲击, 2018, 37(21): 184-189.
Wang Yong, Wang Ruodong, Meng Haodong. Dynamic characteristics of an inclined inerter-based vibration isolator with geometric nonlinearity[J]. Journal of Vibration and Shock, 2018, 37(21): 184-189.
Garrido H, Curadelli O, Ambrosini D. Improvement of tuned mass damper by using rotational inertia through tuned viscous mass damper[J]. Engineering Structures, 2013, 56: 2149-2153.
Barredo E, Blanco A, Colín J, et al. Closed-form solutions for the optimal design of inerter-based dynamic vibration absorbers[J]. International Journal of Mechanical Sciences, 2018, 144: 41-53.
聂佳梅, 张孝良, 江浩斌,等. 惯容器模型结构探索[J]. 机械设计与研究, 2012, 28(1): 29-32.
Nie Jiamei, Zhang Xiaoliang, Jiang Haobin, et al. Research on the inerter structure[J]. Machine Design and Research, 2012, 28(1): 29-32.
Wang X R, He T, Shen Y J, et al. Parameters optimization and performance evaluation for the novel inerter-based dynamic vibration absorbers with negative stiffness[J]. Journal of Sound and Vibration, 2019, 463: 114941.
张瑞甫, 曹嫣如, 潘超. 惯容减震(振)系统及其研究进展[J]. 工程力学, 2019, 36(10): 8-27.
Zhang Ruifu, Cao Yanru, Pan Chao. Inerter system and its state-of-the-art[J]. Engineering Mechanics, 2019, 36(10): 8-27.
李壮壮, 申永军, 杨绍普,等. 基于惯容-弹簧-阻尼的结构减振研究[J]. 振动工程学报, 2018, 31(6): 1061-1067.
Li Zhuangzhuang, Shen Yongjun, Yang Shaopu, et al. Study on vibration mitigation based on inerter-spring-damping structure[J]. Journal of Vibration Engineering, 2018, 31(6): 1061-1067.
李壮壮, 申永军. 单自由度系统强迫激励下惯容对Kelvin模型和Maxwell模型的影响[J]. 石家庄铁道大学学报(自然科学版), 2019, 32(1): 24-30.
Li Zhuangzhuang, Shen Yongjun. Influence of inerter on Kelvin and Maxwell models under forced excitation for single-degree-of-freedom system[J]. Journal of Shijiazhuang Tiedao University (Natural Science Edition), 2019, 32(1): 24-30.
秦美娟,金肖玲,陈志强,等.具惯容离心摆的轴系结构轴向振动减振分析[J]. 振动与冲击, 2018, 37(22): 36-42.
Qin Meijuan, Jin Xiaoling, Chen Zhiqiang, et al. Axial vibration reduction of a shaft structure using a centrifugal pendulum absorber with inerters[J]. Journal of Vibration and Shock, 2018,37(22): 36-42.
孙晓强, 陈龙, 汪少华,等. 非线性惯容器-弹簧-阻尼悬架系统隔振性能分析[J]. 农业工程学报, 2013, 29(23): 38-45.
Sun Xiaoqiang, Chen Long, Wang Shaohua, et al. Analysis of vibration isolation performance for nonlinear inerter-spring-damper suspension[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(23): 38-45.
昝浩, 温华兵, 潘朝峰,等. 惯容器对双层隔振系统动态性能的影响[J]. 机械设计与研究, 2015, 31(3): 17-21.
Zan Hao, Wen Huabing, Pan Chaofeng, et al. The study of dynamic property analysis of the two-stage vibration isolation system for inerter[J]. Machine Design and Research, 2015, 31(3): 17-21.
昝浩, 温华兵, 范紫岩. 含惯容器的多层隔振系统动态性能研究[J]. 江苏科技大学学报(自然科学版), 2015, 29(2): 131-137.
Zan Hao, Wen Huabing, Fan Ziyan. Study of dynamic property of multi-stage vibration isolation system with inerter[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2015, 29(2): 131-137.
王勇, 汪若尘, 孟浩东,等. 基于相对加速度-相对速度控制的半主动惯容隔振器动态特性研究[J]. 振动与冲击, 2019, 38(21): 194-201.
Wang Yong, Wang Ruochen, Meng Haodong, et al. Dynamic characteristics of semi active inerter-based vibration isolator with relative acceleration-relative velocity control[J]. Journal of Vibration and Shock, 2019, 38(21): 194-201.
李春祥, 熊学玉. 杠杆式调谐质量阻尼器(LT⁃TMD)新模型策略的动力特性[J]. 四川建筑科学研究, 2003, 29(4): 73-75.
Li Chunxiang, Xiong Xueyu. Dynamic characteristics of new modeling strategy of lever tuned mass damper (LT-TMD)[J]. Building Science Research of Sichuan, 2003, 29(4): 73-75.
汪正兴, 任文敏, 陈开利. 斜拉索杠杆质量减振器的减振分析[J]. 工程力学, 2007,24(11): 153-157.
Wang Zhengxing, Ren Wenmin, Chen Kaili. Analysis on inclined cable vibration suppression using lever mass damper[J]. Engineering Mechanics, 2007,24(11): 153-157.
Zang Jian, Yuan Tianchen, Lu Zeqi, et al. A lever-type nonlinear energy sink[J]. Journal of Sound and Vibration, 2018,437: 119-134.
刘建武, 叶茂, 谢秋林. 基于杠杆原理阻尼器关键机理和有限元分析[J]. 华南地震, 2019, 39(4): 98-103.
Liu Jianwu, Ye Mao, Xie Qiujin. Key mechanism and finite element analysis of damper based on lever principle[J]. South China Journal of Seismology, 2019, 39(4): 98-103.
邢昭阳, 申永军, 邢海军,等. 一种含放大机构的负刚度动力吸振器的参数优化[J]. 力学学报, 2019, 51(3): 894-903.
Xing Zhaoyang, Shen Yongjun, Xing Haijun, et al. Parameters optimization of a dynamic vibration absorber with amplifying mechanism and negative stiffness[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 894-903.