摘要
在地基振动控制中,较浅的单空沟由于散射效率低,隔振效果并不理想,而多空沟可以通过提高散射效率而达到理想的隔振效果。根据弹性动力学基本理论,在复数域上进行波函数展开,由空沟周边应力自由边界条件,并借助保角映射理论和多极坐标变换技术建立了问题的控制方程,给出了多空沟对平面P‑SV波散射的解析解答。以双空沟为例,参数分析了激励频率、空沟长度和空沟间距等因素对隔振效果的影响规律。结果表明:双空沟的隔振效果明显优于单空沟,并且随着空沟长度增加,隔振效果越好;存在一定的空沟间距使双空沟能发挥出更好的隔振效果。
近年来,地基振动及其控制已经成为岩土工程领域热点研究课题之一。地面波障(空沟和填充
上述研究成果主要集中在不同载荷以及不同地层等条件下单空沟的隔振问题。文献[
基于弹性波散射的基本理论,在复数域上进行波函数展开,由空沟四周应力自由边界条件,并借助保角映射方法和多极坐标变换技术建立了方程组,通过对方程组的求解得到了多空沟屏障对平面P‑SV波散射的解析解答,最后对多空沟屏障的隔振效果进行了分析。
假定土体为各向同性的无限均匀的弹性体,空沟为有限长度的散射体,从而将由N个空沟组成的多空沟对P波的散射问题简化为平面应变问题。以空沟中心为坐标圆心,引入N个局部直角坐标系及对应的复数坐标系,并将第一个局部坐标系设定为全局坐标系,即当j=1时下标可以略去不写。由此建立的数学模型如

图1 多空沟布置及坐标设置
Fig.1 Multiple open trench layout and coordinate setting
设P波的入射频率为,在全局坐标系下,入射P波势函数可以表达为:
(1) |
式中 上标“inc”表示入射;为入射P波的幅值;为入射P波与水平方向(x轴)的夹角;为P波的波数,为P波的波速,λ和μ为土体的Lame常数,ρ为土体的质量密度。
由欧拉公式和复数坐标关系,,入射P波势函数在对应复坐标系下可以表达为:
(2) |
由
(3) |
空沟对P波的散射成分包括散射P波和散射SV波。第k个空沟在满足Helmholtz方程及无穷远处的Sommerfeld辐射条件下对P的散射势函数可以表示
(4) |
(5) |
式中 上标“sc”表示散射;和均为待定复系数;为SV波的波数,为SV波波速;为n阶第一类Hankel函数。
根据
(6) |
(7) |
通过叠加,观测点A处总的散射P波势函数可以表达为:
(8) |
(9) |
由复变函数理论,通过保角映射函数将对应空沟边界映射为单位圆,保角映射后的坐标系统如

图2 保角映射后的坐标系统
Fig.2 Coordinate systems after conformal mapping
(10) |
(11a) |
(11b) |
(11c) |
(11d) |
式中 x为取决于空沟的长宽比的系数;系数c1~c7仅与k有关,其值可采用试算
(12a) |
(12b) |
土体中的正应力和剪应力公
(13a) |
(13b) |
式中 γ为曲线坐标中径向坐标轴与直角坐标系中x轴之间的夹角。
假定空沟边界上满足应力自由边界条件:
(14a) |
(14b) |
将式(
(15) |
将
(16) |
式中 , ,矩阵元素和自由项的详细表达式分别如下:
(17a) |
(17b) |
(17c) |
(17d) |
(17e) |
(17f) |
式中 λ*=。
具体求解方程(16)时需要在左右两边同时乘以,表示第j个曲线坐标系中的环向坐标,然后对在区间上求积分,得到关于待定复系数理论解的无穷阶线性方程组:
(18) |
其中:
(19a) |
(19b) |
空沟对SV波散射解答与空沟对P波散射解答过程完全相同,结果也基本相同。只是入射SV波势函数和矩阵元素略有不同,其表达式如下:
(20) |
式中 ψ0为入射平面SV波的幅值。
(21a) |
(21b) |
式中 β为SV波与水平方向的夹角。
多空沟对平面P波入射时的隔振效果与对平面SV波入射时的隔振效果比较接近,限于篇幅,隔振效果分析时,本文仅给出了双空沟对平面P波入射时的隔振效果。
通过引入振幅衰减比(设置屏障后土体内某点由入射波和散射波产生总的位移与未设置屏障时由入射波单独产生的位移之间的比值)来评价多空沟对平面P波入射情况下的隔振效果,值小于1时说明有隔振效果,且值越小说明隔振效果越好。
为了验证本文解计算精度,引入应力残差,取级数项,剪切波速为 m/s,P波入射频率为75 Hz,空沟间距d12/a=20,宽度a=0.4,长度b=3 m,由

图3 空沟周边应力残差值
Fig.3 Residual stress around the open trench
为了进一步验证本文解答及计算程序的正确性,首先,取,,将本文公式退化为单空沟公式,与文献[

图4 退化为单空沟时计算结果验证
Fig.4 Verification of the calculated results when the model is backed to a single open trench
为了分析不同入射频率下双空沟对隔振效果的影响,首先对入射波频率进行无量纲化处理,;另外取空沟宽度a=0.4 m,空沟长度b/a=10,空沟间距d12/a=7。

图5 不同入射频率下AR随x/a的变化
Fig.5 The change of AR with x/a at different incident frequencies
为了更直观地反映出不同入射频率下双空沟对平面P波的隔振效果,

图6 平均振幅衰减比随无量纲频率的变化
Fig.6 Variation of average amplitude decay ratio with dimensionless frequency
为了分析空沟间距对双空沟隔振效果的影响,取空沟宽度a=0.4 m,空沟长度b/a=10,入射频率,

图7 不同空沟间距时AR随x/a的变化
Fig.7 AR varying with x/a at different open trench spacing
同样,为了进一步反映出空沟间距对隔振效果的影响,

图8 平均振幅衰减比R随d12/a的变化
Fig.8 The change of average amplitude decay ratio R with d12/a
为分析空沟长度对隔振效果的影响,取入射频率,空沟宽度a=0.4 m,

图9 不同空沟长度下AR随x/a的变化
Fig.9 The change of AR with x/a at different open trench lengths

图10 平均振幅衰减比R随空沟长度b/a的变化
Fig.10 The average amplitude decay ratio R varies with the open trench length b/a
基于弹性波散射基本理论,在复数域上进行波函数展开,由空沟周边应力自由边界条件,并借助保角映射理论和多极坐标变换技术建立无穷阶线性方程组,给出了多空沟对弹性P,SV波散射的解析解答。最后参数分析了双空沟对P波的隔振效果,得到如下结论:
(1)随着入射波频率的增大,隔振效果越明显。
(2)存在一定的空沟间距,即当等于8左右时,双空沟能发挥出更好的隔振效果。
(3)空沟长度对隔振效果的影响非常明显,随着空沟长度的增加,隔振效果越好。
参考文献
Woods R D. Screening of surface waves in soils[J]. Journal of the Soil Mechanics and Foundations Division, 1968, 94(4): 951-979. [百度学术]
Haupt W A. Model tests on screening of surface waves[C]. Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering. Stockholm, 1981, 3: 215-222. [百度学术]
Ulgen D, Toygar O. Screening effectiveness of open and in-filled wave barriers: a full-scale experimental study[J]. Construction and Building Materials, 2015, 86: 12-20. [百度学术]
徐平, 张天航, 石明生, 等. 空沟对冲击荷载隔离的现场试验与数值模拟[J].岩土力学, 2014,35(S1):341-346. [百度学术]
XU Ping, ZHANG Tianhang, SHI Mingsheng, et al. In-situ test and numerical simulation of isolation of impact loads by open trenches[J]. Rock & Soil Mechanics, 2014, 35(S1):341-346. [百度学术]
Beskos D E, Dasgupta B, Vardoulakis I G. Vibration isolation using open or filled trenches‑Part 1: 2-D homogeneous soil[J]. Computational Mechanics, 1986, 1(1):43-63. [百度学术]
Dasgupta B, Beskos D E, Vardoulakis I G. Vibration isolation using open or filled trenches‑Part 2: 3-D homogeneous soil[J]. Computational Mechanics, 1990, 6(2):129-142. [百度学术]
Emad K, Manolis G D. Shallow trenches and propagation of surface waves[J]. Journal of Engineering Mechanics, ASCE, 1985, 111(2): 279-282. [百度学术]
巴振宁,王靖雅,梁建文.层状地基中隔振沟对移动列车荷载隔振研究-2.5维IBEM方法[J]. 振动工程学报,2016,29(5):860-873. [百度学术]
BA Zhenning. Wang Jingya. LIANG Jianwen. Reduction of train-induced vibrations by using a trench in a layered foundation[J] Journal of Vibration Engineering, 2016, 29(5):860-873. [百度学术]
巴振宁,梁建文,王靖雅.空沟对层状饱和地基中列车移动荷载的隔振性能研究[J].岩土工程学报,2017,39(5):848-858. [百度学术]
BA Zhenning, LIANG Jianwen, WANG Jingya. Isolation effect of an open trench against train-induced vibrations in a saturated layered ground[J]. Chinese Journal of Geotechnical Engineering, 2017,39(5):848-858. [百度学术]
Andersen L, Nielsen S R K. Reduction of ground vibration by means of barriers or soil improvement along a railway track[J]. Soil Dynamics & Earthquake Engineering, 2005, 25(7): 701-716. [百度学术]
Adam M, Von Estorff O. Reduction of train-induced building vibrations by using open and filled trenches[J]. Computers and Structures, 2005, 83(1): 11-24. [百度学术]
李伟, 高广运. 二维层状地基空沟主动隔振分析[J]. 地下空间, 2004,24(3):391-394. [百度学术]
LI Wei, GAO Guangyun. 2D Analysis of active isolation using open trench in layered medium[J]. Underground Space, 2004, 24(3):391-394. [百度学术]
高广运, 彭争光, 李伟, 等. 三维层状地基空沟主动隔振分析[J]. 西北地震学报, 2006, 28(3): 210-215. [百度学术]
GAO Guangyun, PENG Zhengguang, LI Wei, et al. 3-D analysis of active vibration isolation by open trench in layered ground[J]. Northwestern Seismological Journal, 2006, 28(3): 210-215. [百度学术]
May T W, Bolt B A. The effectiveness of trenches in reducing seismic motion[J]. Earthquake Engineering & Structural Dynamics, 1982, 10(2):195-210. [百度学术]
Saikia Ankurjyoti, Das Utpal Kumar. Analysis and design of open trench barriers in screening steady-state surface vibrations[J]. Earthquake Engineering and Engineering Vibration, 2014, 13(3): 545-554. [百度学术]
Shrivastava R K, Kameswara Rao N S V. Response of soil media due to impulse loads and isolation using trenches[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(8):695-702. [百度学术]
徐平, 石明生, 郭长江. 空沟对SH波隔离效果的理论解答[J]. 地下空间与工程学报, 2015, 11(3): 647-651. [百度学术]
XU Ping, SHI Mingsheng, GUO Changjiang. Theoretical analysis of isolation effects of an open trench on incident SH waves[J]. Chinese Journal of Underground Space and Engineering, 2015, 11(3): 647-651. [百度学术]
徐平. 空沟对平面纵波隔离效果的理论解答[J]. 振动与冲击, 2017, 36(5): 67-71. [百度学术]
XU Ping. Theoretical analysis for isolation effect of an open trench on plane longitudinal waves[J].Journal of Vibration and Shock, 2017, 36(5): 67-71. [百度学术]
YOUNESIAN D, SADRI M. Performance analysis of multiple trenches in train-induced wave mitigation[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2014, 33(1): 47-64. [百度学术]
HWANG J H, TU T Y. Ground vibration due to dynamic compaction[J]. Soil Dynamic and Earthquake Engineering, 2006, 26(5): 337-346. [百度学术]
Gao G Y, Chen J Q, Gu X, et al. Numerical study on the active vibration isolation by wave impeding block in saturated soils under vertical loading[J]. Soil Dynamic and Earthquake Engineering, 2017,93: 99-112. [百度学术]
Ma Q, Zhou F X, Zhang W Y. Vibration isolation of saturated foundations by functionally graded wave impeding block under a moving load[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019,41(2):108-118. [百度学术]
周凤玺,马强,周志雄.二维地基中空沟-波阻板联合隔振屏障分析[J].岩土力学,2020,41(12):4087-4092. [百度学术]
ZHOU Fengxi, MA Qiang, ZHOU Zhixiong. 2D analysis of vibration-isolation efficiency of an open trench-wave impedence block barrier[J]. Rock and Soil Mechanics, 2020,41(12):4087-4092. [百度学术]
Kattis S E, Polyzos D, Beskos D E. Modelling of pile wave barriers by effective trenches and their screening effectiveness[J]. Soil Dynamic and Earthquake Engineering, 1999,18(1): 1-10. [百度学术]
Kattis S E, Polyzos D, Beskos D E. Vibration isolation by a row of piles using a 3-D frequency domain BEM[J]. International Journal for Numerical Method in Engineering, 1999, 46(5): 713-728. [百度学术]
Álamo G M, Bordón J D R, Aznárez J J, et al. The effectiveness of a pile barrier for vibration transmission in a soil stratum over a rigid bedrock[J]. Computers and Geotechnics, 2019,110:274-286. [百度学术]
赵凯, 刘长武, 张国良. 用弹性力学的复变函数法求解矩形硐室周边应力[J]. 采矿与安全工程学报, 2007, 24(3): 361-365. [百度学术]
ZHAO Kai, LIU Changwu, ZHANG Guoliang. Solution for perimeter stresses of rocks around a rectangular chamber using the complex function of elastic mechanics[J]. Journal of Mining & Safety Engineering, 2007, 24(3): 361-365. [百度学术]