摘要
为了提升压电振动能量采集器的综合输出性能,提出了一种具有非对称、变势能阱的三稳态压电振动能量采集器,它由一个末端带磁铁的压电悬臂梁以及一对可随弹簧拉伸和压缩而变动的外部磁铁构成。外部磁铁固定在水平弹簧自由端并与基座相连,且能够随着弹簧压缩和拉伸发生水平移动和转动,从而使系统产生非对称且随时间变化的势能阱。基于点磁荷法和拉格朗日函数,建立了压电振动能量采集系统的非线性磁力模型和分布参数动力学模型;仿真分析了磁铁间距离以及加速度和弹簧刚度等参数对系统势能及其动力学响应特性的影响规律。研究结果表明:弹簧拉压是产生非对称、变势能阱的主要因素;弹簧刚度使非对称势能阱的深度变浅,使采集器更易进入大幅阱间振动状态;随着弹簧刚度的增大,采集器输出电压随之先增大后减小。在低激励振幅下,非对称、变势阱能量采集器比传统对称势阱采集器有更广的频带宽度和更高的采集效率。
压电振动能量采集器是将环境中的振动能量转换成电能的新型微机电器件,在低功耗电子产品的自供电系统中有着较好的应用前景。它可以代替电池并解决电池供电所带来的诸多问题,如更换不方便、污染环境、寿命有限、成本高等问

图1 非对称变势能阱三稳态采集器结构
Fig.1 TEH with linear compressible magnet-spring system
末端磁铁受到外部磁铁的排斥力可以利用点磁荷偶极子理论计算得

图2 磁铁位置几何关系图
Fig.2 Geometric relationship between the tip and twoexternal magnets
系统动力学方程由拉格朗日方程得出(磁力公式及拉格朗日方程推导见附录):
(1) |
式中
, |
, |
, |
,, |
,, |
其中,“·”表示对时间t的一阶导数,“''”表示对x的二阶偏微分。
式中 为主悬臂梁模态坐标;为外部激励;,, 和分别为采集器材料密度、弹性模量、厚度和宽度;下标和分别代表金属基板和PZT;和分别为磁铁和金属质量块的质量;和分别为含压电片悬臂梁和未含压电片悬臂梁的等效质量;和分别为含压电元件和不含压电元件悬臂梁振动模态;为采集输出电压。
将
(2) |
式中 ,化简后有:
(3) |
式中 为系统阻尼系数,为一阶模态频率,,, ,。
本文所用材料和结构参数如
参数 | 数值 |
---|---|
悬臂梁长度/mm 悬臂梁和PZT宽度/mm 悬臂梁厚度/mm PZT密度/(kg· 悬臂梁密度/(kg· PZT弹性模量/GPa 悬臂梁弹性模量/GPa PZT长度/mm PZT厚度/mm 磁铁密度/(kg· 磁铁长度/mm 磁铁厚度/mm 磁铁宽度/mm 真空介电率ε0/(F· 介电常数/(F· 压电应力常数/(C· 磁化强度/(A· 弹簧刚度/(N· |
70 10 0.15 7450 7900 21.45 212 10 0.5 7500 2.75 10 20 8.854×1 1500×eps0 -4.08 0.96×1 900 |
注: eps0表示真空介电常数。
系统静态特性主要表现为系统的势能特性,其表达式为。
如

图3 不同参数条件下采集器系统势能变化情况
Fig.3 Potential energy variables with different system parameters
进一步增大dg 到13 mm,磁铁距离d分别为20,25,30,40 mm时,系统势能曲线如
为了研究dg对系统输出特性的影响,

图4 dg对采集器振动特性与电压输出波形的影响
Fig.4 Effects of dg on the dynamic performance and voltage waveform of the harvester
为了研究d对系统动态特性的影响,取A=10 m/

图5 d对采集器振动特性与电压输出波形的影响
Fig.5 Effects of d on the dynamic performance and voltage waveform of the harvester
进一步对采集器的频率特性进行分析,

图6 不同加速度时采集器位移(左列)、电压(中列)和功率(右列)频率响应特性
Fig.6 Displacement (left column), voltage (middle column) and power (right column) of harvester with different A0

图7 弹簧刚度k对采集器动态特性的影响
Fig.7 Effects of k on the dynamic performance of the harvester
为了进一步揭示非对称、变势能阱三稳态系统的优越性,比较了非对称势能阱系统(TPEH‑K)与传统三稳态能量采集器(TPEH)的动态输出响应。取dg=13 mm,d=28 mm,f=5 Hz,弹簧刚度k=900 N/m条件下,其势能曲线、相图及输出电压图如图

图8 TPEH-K和TPEH势能对比结果
Fig.8 Potential energy of TPEH-K and TPEH

图9 不同加速度下TPEH-K和TPEH位移(左列)和电压(右列)频率响应特性
Fig.9 Displacement (left column) and voltage (right column) of TPEH-K and TPEH with different A0

图10 TPEH-K和TPEH跳转特性
Fig.10 The snap-through behaviors of TPEH-K and TPEH
为了比较TPEH‑K和TPEH两种采集器在不同激励情况下的频域输出特性,

图11 实验样机
Fig.11 Experimental prototype

图12 能量采集器实验测试系统
Fig.12 Experimental test system of energy harvester
首先,对采集器的动态输出特性进行实验测试。

图13 采集器输出性能实验结果
Fig.13 Experimental results of harvester output performance

图14 TPEH-K与TPEH跳转特性实验与理论对比结果
Fig.14 Experimental and theoretical results of snap-through of TPEH-K and TPEH
为了进一步验证激励加速度对两种能量采集器动力学特性的影响,取水平距离d=28 mm,外部磁铁间距dg=13 mm,激励加速度为A=8.5 m/

图15 TPEH-K和TPEH动态特性实验结果比较
Fig.15 Experimental compaison of the dynamic performances betwen TPEH-K and TPEH
为了验证弹簧刚度对能量采集器输出性能的影响,

图16 不同刚度下采集器电压频率响应实验结果
Fig.16 Experimental voltage responses of TPEH-K and TPEH with different stiffness k
设计建立非对称、变势能阱能量采集器的非线性磁力模型和机电耦合动力学模型。利用龙格‑库塔算法进行仿真分析,研究了能量采集器的动态特性,以及弹簧刚度对系统能量采集性能的影响。得到以下结论:
(1) 外部磁铁在水平方向的振动使非对称势能阱深度降低,大幅值振荡运动更容易产生,有利于提升能量采集效率。
(2) 磁体间距会对系统运动状态产生影响,随着距离的增大,采集器会经历双稳态、三稳态、单稳态的运动状态。增大加速度幅值可以有效提高能量采集器的输出性能,拓宽其有效工作频带。
(3) 弹簧刚度是影响能量采集器输出性能的关键因素,选择适当的弹簧刚度,可以得到最大的输出电压及较宽的有效工作频带。
(4) k=900 N/m时,TPEH‑K采集器大幅值阱间运动的频率范围为2.1~5.4 Hz,最大输出电压达到6.8 V,结果均优于TPEH。
参考文献
Wang G Q, Liao W H, Yang B Q, et al. Dynamic and energetic characteristics of a bistable piezoelectric vibration energy harvester with an elastic magnifier[J]. Mechanical Systems and Signal Processing, 2018, 105:427-446. [百度学术]
Erturk A, Hoffmann J, Inman D J. A piezomagnetoelastic structure for broadband vibration energy harvesting[J]. Applied Physics Letters, 2009, 94(25): 254102. [百度学术]
赵泽翔,王光庆,王学保,等.三稳态压电能量采集器的动态特性与实验[J].振动.测试与诊断,2020,40(4):668-672. [百度学术]
Zhao Zexiang, Wang Guangiqng, Wang Xuebao, et al. Dynamic characteristics and experimental analysis of tri-stable piezoelectric energy harvester[J]. Journal of Vibration, Measurement and Diagnosis, 2020,40(4): 668-672. [百度学术]
Wang H Y, Tang L H. Modeling and experiment of bistable two-degree-of-freedom energy harvester with magnetic coupling[J]. Mechanical Systems and Signal Process, 2017, 86(Part A): 29-39. [百度学术]
Erturk A,Inman D J. Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling[J]. Journal of Sound Vibration, 2011, 330: 2339-2353. [百度学术]
唐炜, 王小璞, 曹景军.非线性磁式压电振动能量采集系统建模与分析[J].物理学报,2014, 63(24): 72-85. [百度学术]
Tang Wei, Wang Xiaopu, Cao Jingjun. Modeling and analysis of piezoelectric vibration energy harvesting system using permanent magnetics[J]. Acta Physica Sinica, 2014, 63(24): 72-85. [百度学术]
谭江平,王光庆,鞠洋,等.多稳态压电振动能量采集器的非线性动力学特性及其实验研究[J].振动工程学报,2021,34(4): 765-774. [百度学术]
Tan Jiangping,Wang Guangqing,Ju Yang,et al. Nonlinear dynamic characteristics and experimental validation of a multi-stable piezoelectric vibration energy harvester[J]. Journal of Vibration Engineering, 2021,34(4): 765-774. [百度学术]
张旭辉,赖正鹏,吴中华,等.新型双稳态压电振动俘能系统的理论建模与实验研究[J].振动工程学报,2019,32(1): 87-96. [百度学术]
Zhang Xuhui, Lai Zhengpeng, Wu Zhonghua, et al. Theoretical modeling and experimental study of a new bistable piezoelectric vibration energy harvesting system[J]. Journal of Vibration Engineering, 2019,32(1): 87-96. [百度学术]
孙仲生,杨拥民.悬臂梁压电阵子宽带低频振动能量俘获的随机共振机理的研究[J].物理学报,2011,60(7):430-436. [百度学术]
Sun Zhongsheng, Yang Yongmin. Stochastic resonance mechanism for wideband and low frequency vibration energy harvesting based on piezoelectric cantilever beams[J]. Acta Physica Sinica, 2011,60(7): 430-436. [百度学术]
Zhou Z Y, Qin W Y, Zhu P. Energy harvesting in a quad-stable harvester subjected to random excitation[J]. AIP Advances, 2016,6(2):785-791. [百度学术]
Zhou S, Cao J, Inman D J,et al. Broadband tristable energy harvester: modeling and experiment verification[J]. Applied Energy, 2014, 133: 33-39. [百度学术]
Zhu P, Ren X M, Qin W Y, et al. Theoretical and experimental studies on the characteristics of a tri-stable piezoelectric harvester[J]. Archive of Applied Mechanics, 2017,87(9): 1541-1554. [百度学术]
Wang G Q,Zhao Z X, Liao W H, et al.Characteristics of a tri-stable piezoelectric vibration energy harvester by considering geometric nonlinearity and gravitation effects[J].Mechanical Systems and Signal Processing,2020,138: 106571. [百度学术]
李魁,杨智春,谷迎松,等.变势能阱双稳态气动弹性能量收集的性能增强研究[J].航空学报,2020,41(9):131‑142. [百度学术]
Li Kui, Yang Zhichun, Gu Yingsong, et al. Performance enhancement of variable-potential-well bi-stable aeroelasticity energy harvesting[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 131‑142. [百度学术]
Zou H X, Zhang W M, Wei K X, et al. A compressive-mode wideband vibration energy harvester using a combination of bistable and flextensional mechanisms[J]. Journal of Applied Mechanics, 2016,83(12): 121005. [百度学术]
李海涛,丁虎,陈立群.带有非对称势能阱特性的双稳态能量采集系统混沌动力学分析[J].振动与冲击,2020,39(18): 54-59. [百度学术]
Li Haitao, Ding Hu, Chen Liqun. Chaotic dynamics of a bi-stable energy harvesting system with asymmetric potential well characteristics[J]. Journal of Vibration and Shock, 2020,39(18): 54-59. [百度学术]
Zhou Z Y, Qin W Y, Du W F, et al.Improving energy harvesting from random excitation by nonlinear flexible bi-stable energy harvester with a variable potential energy function[J].Mechanical Systems and Signal Processing, 2019,115: 162-172. [百度学术]
Leng Y G, Tan D, Liu J J, et al. Magnetic force analysis and performance of a tri-stable peizoelectric energy harvester under random excitation[J]. Journal of Sound and Vibration, 2017,406(1): 146-160. [百度学术]