摘要
提出一种调谐负刚度⁃惯容质量阻尼器(TNIMD),用于地震作用下的结构减震控制。通过拉格朗日方程得到结构TNIMD耦合系统运动方程,采用定点理论进行TNIMD参数优化设计,讨论最优负刚度系数的取值,开展参数分析和减震效果验证。参数分析研究表明:TNIMD对主结构位移响应的控制优于无负刚度元件下的调谐惯容质量阻尼器(VTMDI),且质量比及惯容比越小,TNIMD相对优势越大。减震分析结果表明:在远场、近场脉冲及近场无脉冲地震作用下,TNIMD对主结构位移及绝对加速度响应的控制效果均优于VTMDI,验证了TNIMD减震的优越性,为TNIMD研究提供参考。
近年来,基于惯容(Inerter)的减振装置受到土木工程界的极大关注。惯容的本质是一种惯性力放大装
为进一步放大VMD的阻尼力和惯性力,受调谐质量阻尼器(TMD)的启发,以Ikago
此外,也有学者利用负刚度的位移放大效应,将负刚度弹簧引入到惯容减振装置中,陈杰
鉴于此,在VTMDI的构型中引入负刚度弹簧,组成惯容⁃阻尼⁃负刚度的并联形式,形成了一种调谐负刚度⁃惯容质量阻尼器(Tuned Negative⁃stiffness Inerter Mass Damper,TNIMD),该装置利用负刚度弹簧增大阻尼耗能,实现对VTMDI减震效果的提升。本文建立结构基底激励下的TNIMD与单自由度结构耦合系统模型,采用定点理论优化TNIMD频率和阻尼比,讨论刚度系数的取值范围和相比VTMDI的优越性,通过数值模拟验证地震作用下TNIMD对结构的减震效果。
(1) |
式中 xs及x1分别为主结构及TNIMD相对地面的位移;xg为基底位移;为TNIMD与主结构相连的弹簧刚度。

图1 TNIMD与被控主结构耦合系统模型
Fig.1 TNIMD and controlled main structure coupling system model
根据拉格朗日方程得到耦合系统运动方程为:
(2) |
引入如下无量纲参数:
(3) |
式中 μ及μb分别为TNIMD物理及惯性质量与主结构质量比;ωs及ω1分别为主结构及TNIMD振动圆频率,β为二者频率比;ζs及ζ1分别为主结构及TNIMD阻尼比;α为无量纲负刚度系数;ϕ为外激励频率与主结构频率比;τ为无量纲时间;t为时间;ag为基底激励荷载幅值。
同时引入主结构及TNIMD的无量纲位
(4) |
(5) |
在谐波荷载激励下,即,主结构与TNIMD位移响应可分别假设
(6) |
式中 ys0及y10分别为主结构及TNIMD位移响应幅值。
(7) |
其中:
(8) |
根据定点理论,假设主结构阻尼比ζs=0,主结构位移幅频响应函数(Frequency Response Functions, FRFs)存在与阻尼器阻尼比无关的定点,如
(9) |

图2 TNIMD阻尼比对主结构FRFs的影响(μ=0.01,μb=0.1)
Fig.2 FRFs of main structure installed TNIMD with different damping ratio (μ=0.01,μb=0.1)
TNIMD阻尼比分别取为0和+∞,并令对应的主结构位移幅频响应函数相
(10) |
(11) |
根据韦达定理,有:
(12) |
式中 ϕP,ϕQ分别为两定点P,Q的横坐标。
取ϕ=ϕP,ϕ=ϕQ,分别带入
(13) |
当
(14) |
令
(15) |
为保障最优调谐频率比大于0,无量纲负刚度系数应满足:。
(16) |
此外,将
(17) |
在TNIMD调谐过程中,已使两定点位置幅频响应曲线的幅值相等。为得到最优阻尼比,还需使两定点作为幅频响应曲线的峰值
(18) |
此时,假设:
(19) |
(20) |
式中 ,分别为p,q表达式对
将
(21) |
在确定负刚度系数之前,需先明确该系统的稳定性判定条件。耦合系统的特征方程可表示为:
(22) |
其中:
(23) |
本文采用劳斯⁃赫尔维茨判据,各系数需满足如下关
(24) |
负刚度系数的确定方法一般有两种:一种人为给定满足稳定性条件的负刚度系数;另一种更为常用,令两定点P,Q对应幅值与零激励频率时的幅值相
(25) |
根据
(26) |
(27) |
由
(28) |
将α2,3代入

图3 TNIMD负刚度系数对主结构FRFs的影响(μ=0.01,μb=0.1)
Fig.3 FRFs of main structure installed TNIMD with different negative stiffness coefficients (μ=0.01, μb=0.1)
TNIMD最优频率比、最优阻尼比、最优负刚度系数及对应的主结构位移幅频响应最大值随惯容比的变化规律如

图4 TNIMD最优调谐参数随惯容比的变化规律
Fig.4 The relationship between optimal tuned parameters of TNIMD and the inerter ratio
若适当增大负刚度系数值,如令α为0.3,0.5及0.7倍αopt,此时主结构位移幅频响应最大值在不同质量比下的变化如

图5 TNIMD负刚度系数对主结构位移幅频响应最大值的影响
Fig.5 Effect of negative stiffness coefficients of TNIMD on the maximum of displacement amplitude⁃frequency response of the main structure

图6 简谐荷载下TNIMD与VTMDI对主结构最大值位移响应的减振效果比较
Fig.6 Comparison of damping effect of TNIMD and VTMDI on the maximum displacement response of main structure under harmonic loads
根据文献[
(29) |
令,并联合
(30) |
(31) |

图7 最优负刚度系数与负刚度系数取值限值对比
Fig.7 Comparison of optimal negative stiffness coefficient and limit value of negative stiffness coefficient
根据FEMA P69
分析中,不考虑地震对结构的破坏,结构处于线弹性阶段。假设主结构质量取为2200 kg,阻尼比取为1.0%,主结构周期T根据仿真需要设置,取为0.01~3 s。各地震波加速度幅值统一取为0.3g,不考虑地震波加速度幅值对减震的影响。


图8 地震作用下安装TNIMD和VTMDI的被控结构响应指标平均值随主结构周期变化的规律
Fig.8 The variation of the average value of TNIMD and VTMDI with the period of the main structure under earthquake
主结构 周期 | 主结构 响应 | 远场 | 近场脉冲 | 近场无脉冲 | |||
---|---|---|---|---|---|---|---|
最大值 | 均方根 | 最大值 | 均方根 | 最大值 | 均方根 | ||
0.5 s | xs | 30.46 | 28.95 | 16.67 | 17.07 | 28.06 | 26.32 |
20.29 | 22.63 | 16.44 | 18.19 | 20.79 | 21.09 | ||
2 s | xs | 21.73 | 29.75 | 32.45 | 34.67 | 23.44 | 27.54 |
6.15 | 12.69 | 14.28 | 18.57 | 8.35 | 11.00 |
综上可见,在各类地震作用下,TNIMD均具有良好的减震控制效果。
本文提出了一种调谐负刚度⁃惯容质量阻尼器(TNIMD),开展了参数优化与地震响应控制研究,结果表明:
(1)假设主结构阻尼比ζs=0,主结构位移幅频响应曲线存在与阻尼器阻尼比无关的两个定点,采用定点理论,得到了阻尼器的最优调谐比、最优阻尼比理论公式。
(2)在最优负刚度系数下,TNIMD减振效果相比VTMDI随质量比及惯容比的减小而增大,最大可超过70%。TNIMD减振效果更好。
(3)TNIMD在远场、近场脉冲及近场无脉冲地震作用下对主结构地震响应均有良好的控制效果,且对位移及绝对加速度响应减震效果均优于VTMID,说明了负刚度元件对阻尼器耗能减振的提升作用。
参考文献
Ma R S, Bi K M, Hao H. Inerter-based structural vibration control: a state-of-the-art review[J]. Engineering Structures, 2021, 243:112655. [百度学术]
Tadashi A, Hidetsugu K, Fumiaki A, et al. Development of seismic devices applied to ball screw: Part 1 Basic performance test of RD-series[J]. AIJ Journal of Technology and Design, 1999, 5(8):239-244. [百度学术]
Ikago K, Saito K, Inoue N. Seismic control of single-degree-of-freedom structure using tuned viscous mass damper[J]. Earthquake Engineering & Structural Dynamics, 2012, 41(3):453-474. [百度学术]
Smith M C. Force-controlling mechanical device: US7316303 B2[P]. 2001-7-4. [百度学术]
Smith M C. Synthesis of mechanical networks: the inerter[J]. IEEE Transactions on Automatic Control, 2002, 47(10): 1648-1662. [百度学术]
徐龙, 毛明, 陈轶杰,等. 车辆惯容器-弹簧-阻尼器悬挂构型设计方法综述[J]. 兵工学报, 2020, 41(4):822-832. [百度学术]
Xu Long, Mao Ming, Chen Yijie, et al. A systematic review of vehicle ISD suspension configuration design[J]. Acta Armamentarii, 2020, 41(4):822-832. [百度学术]
Wang F C, Su W J. Impact of inerter nonlinearities on vehicle suspension control[J]. Vehicle System Dynamics, 2008, 46(7):575-595. [百度学术]
Kida H, Nakaminami S, Saito K, et al. A seismic control system with multi-tuning viscous mass damper and its design method[J]. Journal of Structural & Construction Engineering, 2009, 74(643):1575-1583. [百度学术]
Lazar I F, Neild S A, Wagg D J. Using an inerter-based device for structural vibration suppression[J]. Earthquake Engineering & Structural Dynamics, 2014, 43(8):1129-1147. [百度学术]
Marian L, Giaralis A. Optimal design of a novel tuned mass-damper-inerter (TMDI) passive vibration control configuration for stochastically support-excited structural systems[J]. Probabilistic Engineering Mechanics, 2014, 38:156-164. [百度学术]
Garrido H, Curadelli O, Ambrosini D. Improvement of tuned mass damper by using rotational inertia through tuned viscous mass damper[J]. Engineering Structures, 2013, 56:2149-2153. [百度学术]
Hu Y L, Chen M Z Q. Performance evaluation for inerter-based dynamic vibration absorbers[J]. International Journal of Mechanical Sciences, 2015, 99:297-307. [百度学术]
Dai J, Xu Z D, Gai P P. Tuned mass-damper-inerter control of wind-induced vibration of flexible structures based on inerter location[J].Engineering Structures, 2019, 199:109585. [百度学术]
李亚峰, 李寿英, 陈政清. 变化型惯质调谐质量阻尼器的优化与性能评价[J]. 振动工程学报, 2020, 33(5):877-884. [百度学术]
Li Yafeng, Li Shouying, Chen Zhengqing. Optimization and performance evaluation of variant tuned mass damper inerter[J]. Journal of Vibration Engineering, 2020, 33(5): 877-884. [百度学术]
Agathoklis Giaralis M, Petrini F, et al. Wind-induced vibration mitigation in tall buildings using the tuned mass-damper-inerter[J].Journal of Structural Engineering, 2017, 143(9): 04017127 [百度学术]
Xu K, Bi K M, Han Q, et al. Using tuned mass damper inerter to mitigate vortex-induced vibration of long-span bridges: Analytical study[J]. Engineering Structures, 2019, 182:101-111. [百度学术]
文永奎, 陈政清, 韩冰,等. TVMD的减振机理及其提升连续梁减震性能的研究[J]. 振动工程学报, 2018, 31(4):599-610. [百度学术]
Wen Yongkui,Chen Zhengqing, Han Bing, et al. Control mechanism of TVMD and its performance improvement for seismic mitigation of continuous bridge[J]. Journal of Vibration Engineering, 2018, 31(4): 599-610. [百度学术]
Pietrosanti D, De Angelis M, Basili M. Optimal design and performance evaluation of systems with Tuned Mass Damper Inerter (TMDI)[J]. Earthquake Engineering & Structural Dynamics, 2017,46(8): 1367-1388. [百度学术]
Gao H,Wang H,Li J, et al. Optimum design of viscous inerter damper targeting multi-mode vibration mitigation of stay cables[J]. Engineering Structures, 2021,226:111375. [百度学术]
Lazar I F, Neild S A, Wagg D J. Vibration suppression of cables using tuned inerter dampers[J]. Engineering Structures, 2016, 122:62-71. [百度学术]
刘菁, 梁栋. 垂度拉索-惯质阻尼器体系的减振分析[J]. 振动与冲击,2021,40(16): 29-38. [百度学术]
Liu Jing, Liang Dong. Vibration reduction analysis of a cable-inertial damper system with sag[J]. Journal of Vibration and Shock,2021,40(16): 29-38. [百度学术]
陈杰, 孙维光, 吴杨俊,等. 基于惯容负刚度动力吸振器的梁响应最小化[J]. 振动与冲击, 2020, 39(8):15-22. [百度学术]
Chen Jie, Sun Weiguang, Wu Yangjun,et al. Minimization of beam response using inerter-based dynamic vibration absorber with negative stiffness[J]. Journal of Vibration and Shock, 2020, 39(8):15-22. [百度学术]
范舒铜,申永军.含惯容和接地刚度的黏弹性动力吸振器的参数优化[J].振动工程学报,2022,35(4):814-825. [百度学术]
Fan Shutong, Shen Yongjun. Parameter optimization of viscoelastic dynamic vibration absorber with inerter and grounded stiffness[J]. Journal of Vibration Engineering,2022,35(4):814-825. [百度学术]
刘文光, 余欣欣, 许浩, 等. 设置阻尼负刚度系统的高层隔震结构地震响应分析[J].建筑结构学报,2020, 41(7): 36-44. [百度学术]
Liu Wenguang, Yu Xinxin, Xu Hao, et al. Seismic response of high-rise isolated building based on negative stiffness device with damping[J]. Journal of Building Structures, 2020, 41(7):36-44. [百度学术]
Applied Technology Council. Quantification of building seismic performance factors: FEMA P695[S].Washington D. C.: Federal Emergency Management Agency,2009. [百度学术]