利用振动响应协方差参数和数据融合的损伤 识别方法

李雪艳,刘力菖

(暨南大学力学与建筑工程学院"重大工程灾害与控制"教育部重点实验室,广东广州 510632)

摘要:使用结构加速度响应协方差和应变响应协方差参数以及基于贝叶斯估计的数据融合理论进行结构损伤判定和损伤位置识别,理论推导证明响应协方差参数是结构模态参数的函数,结构损伤会导致响应协方差参数的改变,当只使用结构损伤前后的响应协方差参数,不使用结构分析模型进行结构损伤识别时,损伤向量会受到激励位置、测试噪声和误差等的影响,所以使用贝叶斯数据融合理论,对来自多种传感器和多种测试环境下得到的多组损伤向量进行数据融合,以提高损伤识别的精度;利用一个七层框架结构进行包括单损伤和多损伤的多种损伤工况的数值模拟,研究所提方法的适用性和有效性,最后对简支钢梁进行实验验证,损伤位置附近的传感器所得到的损伤指标具有最大的损伤概率。

关键词:损伤识别;协方差;贝叶斯数据融合;加速度响应;应变响应
中图分类号:TB123 文献标志码:A 文章编号:1004-4523(2021)01-0141-09
DOI:10.16385/j.cnki.issn.1004-4523.2021.01.016

引 言

对结构进行健康监测,可以现场监控结构整体 运行情况,及时判定损伤发生和识别损伤位置,尽早 对结构进行修复,预防发生更大范围的损伤,避免重 大人员伤亡^[14]。在工程结构的损伤识别中,可以通 过传感器直接测得振动响应,这些响应包含了结构 状态信息,如何从振动响应中提取出有效反映结构 状态的参数指标非常重要。

目前,国内外基于振动响应的损伤识别方法有 动力指纹法^[5]、神经网络算法^[6]、遗传算法^[67]、小波 分析法和小波包分析法^[8-10]等;但是由于以下几个 问题影响了这些识别方法的效果和在实际工程结构 中的广泛应用。第一,进行模态识别时,不可避免地 产生主观性误差、功率谱泄露、密集模态丢失、截断 误差等问题;第二,在基于振动参数的时域损伤识别 方法中,存在系统定阶问题和模态丢失问题;第三, 不能尽可能多地包含更多阶数的模态信息,丢失了 响应信号中对损伤敏感的高阶模态,使得提取的损 伤指标对损伤识别不够灵敏;第四,有些方法计算需 人工参与,产生人工干预的随机性,不适合对海量连 续监测数据进行自动在线分析和健康监测。

Li和Law等^[11-12]提出了基于白噪声激励下结构 加速度响应自/互相关函数的协方差参数(Covariance of Covariance of Acceleration Response,简称 CoC)来识别损伤;李雪艳等^[13]建立了一般激励下应 变响应协方参数CoS(Covariance of Strain Impulse Response Function)进行损伤检测。经证明,加速度 响应协方差CoC和应变响应协方差CoS是结构位 移振型、频率、阻尼比和应变振型等参数的函数,结 构参数的改变会引起模态参数的变化,最后导致 CoC和CoS的改变,因此可以用作结构健康监测指 标,但是在不使用结构分析模型,只比较结构损伤前 后响应协方差参数进行损伤识别时,得到的损伤向 量受到激励位置、测试噪声和误差等的影响,降低了 损伤识别的精度。

数据融合一词出现在 20 世纪 70 年代,并于 80 年代发展成为一专门技术,是人类模仿自身信息处 理能力的结果,类似人类和其他动物对复杂问题的 综合处理^[14-18]。将多传感器数据融合技术与结构损 伤识别相结合,能够有效提高故障诊断准确率。通 过从多个传感器上获得的冗余或互补信息,根据融 合算法来进行数据融合,继而得出最佳协同作用的 结果,提高损伤识别的准确率^[19-22]。

本文拟使用加速度响应协方差和应变响应协方 差参数来进行损伤识别,对不同激励位置,不同噪声 水平下的多个加速度响应协方差和应变响应协方差 参数所形成的损伤向量进行贝叶斯融合,最终得到 改善的损伤向量,提高损伤识别的准确性。

基金项目:广东省重点领域研发计划(2019B111106001);广东省自然科学基金自由申请项目(2017A030313272)

收稿日期: 2019-04-11; 修订日期: 2019-11-01

本文首先简单推导了加速度响应协方差和应变 响应协方差参数公式,进行了贝叶斯融合理论回顾, 并给出两者相结合的损伤识别步骤,然后对一个七 层框架结构进行数值模拟并进行简支钢梁的实验验 证,研究本文所提方法的适用性和有效性。

1 响应协方差参数

对于有N个自由度的黏性阻尼系统,其在一般激励下的运动方程为^[11,23]

 $M\ddot{x}(t) + C\dot{x}(t) + Kx(t) = DF(t)$ (1) 式中 $M, C \pi K$ 分别为 $N \times N$ 阶质量矩阵、阻尼矩 阵和刚度矩阵; D 为与激励位置相对应的 $N \times n_f$ 阶 的结构自由度向量; n_f 为激励的个数;F(t) 为 $n_f \times 1$ 阶激励力向量; $\ddot{X}(t)$ 为 $N \times 1$ 阶加速度向量; $\dot{X}(t)$ 为 $N \times 1$ 阶速度向量;X(t) 为 $N \times 1$ 阶位移向量。

加速度单位脉冲响应函数用广义坐标可表示为
$$\ddot{h}_{l}(t) = \sum \Phi_{li} \times \ddot{q}_{i}(t)$$
 (2)

式中 $\ddot{h}_{i}(t)$ 为第l个自由度处的单位脉冲响应函数, Φ_{li} 为第i阶位移振型 Φ_{i} 的第l个分量, \ddot{q}_{i} 为第i个 广义坐标。

$$\ddot{q}_{i}(t) = \frac{\Phi_{fi}}{\omega_{di}} e^{-\xi_{i}\omega_{i}t} \left[-2\xi_{i}\omega_{i}\omega_{di}\cos\left(\omega_{di}t\right) + \left(\xi_{i}^{2}\omega_{i}^{2} - \omega_{i}^{2}\right)\sin\left(\omega_{i}t\right) \right]$$

$$(5)$$

式中 $\omega_i, \omega_{di}, \xi_i$ 分别为第*i*阶无阻尼固有频率、有阻 尼频率和阻尼比; Φ_{fi} 为第*i*阶振型的激励位置处对 应自由度分量。

式中
$$c_i = -2\xi_i \omega_i \omega_{di}, d_i = \xi_i^2 \omega_i^2 - \omega_{di}^2, s_i = \xi_i \omega_i$$
。
忽略高阶小量,有如下式子

$$\int_{0}^{N} \ddot{h}_{l}(t) \ddot{h}_{l}(t) dt \approx \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{2\Phi_{li} \Phi_{lj} \Phi_{jj} \Phi_{jj} \omega_{i} \omega_{j} (\xi_{i} \omega_{j}^{3} + \xi_{j} \omega_{i}^{3})}{(\omega_{i} + \omega_{j})^{2} [(\omega_{i} - \omega_{j})^{2} + (\xi_{i} \omega_{i} + \xi_{j} \omega_{j})^{2}]}$$
(5)

加速度响应协方差参数可定义和计算如下

$$CoI_{l} = (\ddot{\boldsymbol{h}}_{l})^{\mathrm{T}} \times \ddot{\boldsymbol{h}}_{l} = \frac{\int_{0}^{\infty} \ddot{\boldsymbol{h}}_{l}(t) \ddot{\boldsymbol{h}}_{l}(t) dt}{\Delta t} \approx \frac{2}{\Delta t} \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{\boldsymbol{\Phi}_{ii} \boldsymbol{\Phi}_{ij} \boldsymbol{\Phi}_{ji} \boldsymbol{\Phi}_{ji} \boldsymbol{\omega}_{i} \omega_{j} (\boldsymbol{\xi}_{i} \omega_{j}^{3} + \boldsymbol{\xi}_{j} \omega_{i}^{3})}{(\boldsymbol{\omega}_{i} + \boldsymbol{\omega}_{j})^{2} [(\boldsymbol{\omega}_{i} - \boldsymbol{\omega}_{j})^{2} + (\boldsymbol{\xi}_{i} \boldsymbol{\omega}_{i} + \boldsymbol{\xi}_{j} \omega_{j})^{2}]}$$
(6)

当应变响应可以计算或者测试得到时,那么可 以定义和计算应变响应协方差参数如下^[13]

$$CoS_{l} = (\boldsymbol{h}_{l}^{\varepsilon})^{\mathrm{T}} \times \boldsymbol{h}_{l}^{\varepsilon} \approx \frac{1}{\Delta t} \sum_{i=1}^{N} \frac{\boldsymbol{\Psi}_{li}^{2} \boldsymbol{\Phi}_{fi}^{2}}{4\xi_{i} \omega_{i}^{3}}$$
(7)

式中 Ψ_i为第*i*阶应变振型的第*l*个分量。

公式(6)和(7)表明,加速度或者应变响应协方 差只与位移模态、频率和阻尼比以及应变模态相关, 而不像公式(3)中的*q_i(t)*一样与时间维度相关,因 此,公式(6)和(7)中的协方差被认为是结构模态参 数的函数,结构参数的改变(如刚度下降)会导致结 构模态参数的改变,从而使响应协方差参数产生变 化,所以可用于结构损伤识别。

2 实验响应协方差参数

当结构承受的载荷是冲击荷载,即载荷作用时间很短时,单位脉冲响应函数可以通过如下公式近似得到,这样可避免傅里叶变换而简化计算^[13]。

$$\ddot{\boldsymbol{h}}_{l}(t) \approx \ddot{\boldsymbol{x}}_{l}(t) / \int_{0}^{t_{1}} F(\tau) \mathrm{d}\tau \qquad (8)$$

$$\boldsymbol{h}_{l}^{\varepsilon}(t) \approx \varepsilon_{l}(t) / \int_{0}^{t_{1}} F(\tau) \mathrm{d}\tau \tag{9}$$

式中 t_1 为载荷作用时间, $\int_0^{t_1} F(\tau) d\tau$ 为作用在结构 上的激励冲量。本文中,式(8)和(9)被用来计算冲 击载荷下的加速度和应变脉冲响应函数,再利用式 (6)和(7)的前半部分计算出 *CoI*和 *CoS* 参数。

3 贝叶斯理论及其融合原理

1763年英国学者 Thomas Bayes 的著名贝叶斯 估计理论被公开发表,其核心是贝叶斯公式。基本 原理是:在给定各独立事件的先验概率的前提下,随 着新的测量结果的到来,不断更新先验概率从而得 到后验概率^[14,19-23],基于贝叶斯估计融合理论的一个 特点是其可以适用于多假设的情况。

假定有 m个数据源 S_1 , S_2 , …, S_m , ne 个需要识 别的目标 A_1 , A_2 , …, A_{ne} , 在贝叶斯融合中, 每个目 标的先验概率需要事先给定, 对工程结构, 贝叶斯融 合理论的先验概率是较难获取的。在本文中, 先验 概率取平均值, 即 $P(A_i) = \frac{1}{ne}$, i = 1, 2, ..., ne, 且 $\pi \sum_{i=1}^{ne} P(A_i) = 1_{\circ}$

如果m个数据源之间是相互独立的,目标 A_i 的条件概率 $P(S_1, S_2, \dots, S_m | A_i)$ 可以按如下公式计算

 $P(S_1, S_2, \cdots, S_m | A_i) =$

$$P(S_{1}|A_{i})P(S_{2}|A_{i})\cdots P(S_{m}|A_{i}) = \prod_{k=1}^{m} P(S_{k}|A_{i})$$
(10)

从对结构损伤状态和未损伤状态的第k次测试,可以得到CoI变化向量为 $\{CoI_{l_1}^d - CoI_{l_1}^u CoI_{l_2}^d - CoI_{l_2}^u \cdots CoI_{l_m}^d - CoI_{l_m}^u\},$ 那么 $P(S_k|A_n)$ 为

$$P(S_{k}|A_{n}) = \frac{\left|CoI_{l_{n},ij}^{d} - CoI_{l_{n},ij}^{u}\right|}{\sum_{s=1}^{ne} \left|CoI_{l_{s},ij}^{d} - CoI_{l_{s},ij}^{u}\right|}$$
(11)

当得到 CoS 变化向量时同样也可以如式(11) 一样计算得到 $P(S_k|A_n)$ 。按照贝叶斯融合理论,最后的融合概率为

$$\begin{array}{l}
P(A_{i}|S_{1}, S_{2}, \cdots, S_{m}) = \\
\frac{P(S_{1}, S_{2}, \cdots, S_{m}|A_{i})P(A_{i})}{\sum_{i=1}^{ne} P(S_{1}, S_{2}, \cdots, S_{m}|A_{i})P(A_{i})} = \\
\frac{P(S_{1}|A_{i})P(S_{2}|A_{i})\cdots P(S_{m}|A_{i})P(A_{i})}{\sum_{i=1}^{ne} P(S_{1}|A_{i})P(S_{2}|A_{i})\cdots P(S_{m}|A_{i})P(A_{i})} (12)
\end{array}$$

4 损伤识别步骤

基于振动响应协方差参数和贝叶斯融合的结构 损伤识别过程可简单描述如下:

(1)测量结构未损伤状态时的加速度或应变响 应和激励;

(2)利用式(8)或(9)计算各测点的脉冲响应函数;

(3)利用式(6)或(7)计算各测点的响应协方差参数;

(4)重复步骤(1)至(3),计算结构损伤状态时的 响应协方差参数;

(5)比较结构未损伤和损伤状态时的响应协方 差参数,得到响应协方差参数改变向量,并由式(11) 得到损伤概率向量。

(6)把从*m*个数据源多次测试下的数据得到的损 伤概率向量,由式(12)进行贝叶斯数据融合,得到最后 的损伤概率向量,进行结构损伤判定和损伤位置识别。

5 七层框架模型及其数值模拟

对如图1(a)所示的七层钢框架结构进行数值 模拟分析,研究基于响应协方差参数和贝叶斯融合

的损伤识别方法的有效性。每层竖向柱子被分成两 个等长的梁单元,每层横向梁被分成三个等长的梁 单元,结构的有限元模型的单元和节点编号系统如 图1(b)所示,总共56个平面梁单元,51个节点,每 个节点3个自由度,共153个自由度,结构每层柱子 高为0.3 m, 总共2.1 m, 柱横截面为长50 mm、宽 8.92 mm的矩形,横向梁长为0.5 m,截面为长50 mm、宽 4.85 mm 的 的 矩 形, 材 料 弹 性 模 量 E =206 GPa,结构中柱的质量密度和梁的质量密度分别 为 7850 kg/m³ 和 7746 kg/m³。为了模拟楼板的质 量,每层分别加了两对质量块,每一对质量块为 3.9kg;框架的底部被固支,横向、竖向和转动方向的 约束由大刚度1.0×10¹⁰ kN/m,1.0×10¹⁰ kN/m和 1.0×10^9 kN·m/rad 代替,采用瑞利阻尼,前两阶阻 尼比为 $\xi_1 = \xi_2 = 0.01$,其他阶阻尼比由 $\boldsymbol{\Phi}^{\mathrm{T}} C \boldsymbol{\Phi} / (2 \boldsymbol{\omega})$ 计算得到, $\boldsymbol{\Phi}$ 为振型矩阵, C 为阻尼矩 阵,ω为模态频率向量,结构前10阶频率为2.495, 7.503, 12.529, 17.458, 22.049, 25.897, 28.507, 39.999, 42.066 和 43.747 Hz. 结构的前几阶振型主 要为剪切振型,采样频率为2000 Hz。

5.1 损伤工况1:第6单元刚度减少10%

分别在第2,4,6,8,10,12和14节点作用水平方向的三角脉冲激励,每次激励峰值不同,持续0.005 s,由逐步积分法计算各柱节点水平方向和各梁节点 竖直方向的加速度响应和全部方向的位移响应,并 由位移响应计算得到应变响应^[13],并分别添加5%, 10%,15%,20%,25%和30%的白噪声来模拟测试 噪声,得到"测试"加速度响应和应变响应,由式(8) 和(9)计算加速度和应变脉冲响应函数,再由式(6) 和(7)计算各单元的*CoI*和*CoS*。

第6单元刚度减少10%来模拟单损伤情况,并 进行相同位置的激励(激励大小可不同)和测试对应 位置处的加速度响应和应变响应,最后计算各单元 的*CoI*和*CoS*。把损伤状态下各单元的*CoI*和*CoS* 减去无损伤时的*CoI*和*CoS*,得到*CoI*和*CoS*的改变 向量,并由式(11)得到损伤概率向量,由*CoI*可得到 总共7×6=42个损伤概率向量,再由式(12)进行 贝叶斯融合,可以得到最后的损伤概率向量如图2 所示,第6单元有63.7%的最大损伤概率,而第5单 元有9.97%和第50单元有8.57%的伪损伤概率;同 样对42个*CoS*得到的损伤概率向量进行贝叶斯融 合,得到如图3所示的损伤概率向量,第6单元有 90.65%的损伤概率,而第5单元有8.81%的伪损伤

图 2 第 6 单元损伤时由 CoI改变和贝叶斯融合得到的损伤 概率向量

Fig. 2 Damage probability vector from *CoI* change and Bayesian fusion with 6th element damaged

图 3 第 6 单元损伤时由 CoS 改变和贝叶斯融合得到的损伤 概率向量

Fig. 3 Damage probability vector from *CoS* change and Bayesian fusion with 6th element damaged

概率;如果把总共42+42=84个 CoI和 CoS 得到的 损伤概率向量一起进行贝叶斯融合,则可以得到如 图 4 所示的损伤概率向量,第 6 单元有 98.49% 的损 伤概率,而第 5 单元仅有 1.5% 的伪损伤概率,其他 单元的损伤概率都接近于零。

图4 第6单元损伤时由 CoI和 CoS 改变和贝叶斯融合得到 的损伤概率向量

Fig. 4 Damage probability vector from *CoI* and *CoS* change and Bayesian fusion with 6th element damaged

表明单独的加速度响应协方差参数和贝叶斯融 合可以识别出损伤位置,但是有少数低概率伪损伤 单元出现;单独的应变响应协方差参数和贝叶斯融 合,能成功识别出损伤单元,但也有一个低概率伪损 伤单元,当加速度响应和应变响应协方差参数联合 使用时,则损伤单元的概率更高,伪损伤单元的数目 更少和概率更低。

CoI和CoS对结构损伤的敏感性由其所包含的 模态参数的阶数决定,而模态阶数由采样频率决定。 采样频率为2000 Hz时,由测试响应计算得到的CoI 和CoS包含了1000 Hz以下的结构前37阶模态参 数;当采样频率减少到250 Hz时,CoI和CoS中包含 了前20阶模态参数,仍然能成功识别出该损伤工况 中的损伤位置;而当采样频率减少到125 Hz时,只 包含了前14阶模态参数,则无法识别出损伤。所以 本文提出的响应协方差参数方法,需要较高的采样 频率,才能保证较好的识别效果。

5.2 损伤工况2:第11单元刚度减少10%,第55单 元刚度减少15%

第11单元刚度减少10%,第55单元刚度减少 15%来模拟两处损伤情况,进行同损伤工况1位置 的激励和相同节点处的加速度和应变响应测试,并 添加六种不同水平的白噪声来模拟测试噪声,然后 计算各单元的 CoI和 CoS,减去结构未损伤状态时 各单元的 CoI和 CoS,得到 CoI和 CoS 的改变向量, 最后得到42个基于 CoI改变的损伤概率向量,并进 行贝叶斯融合,得到如图5所示的损伤概率向量,可 以看到第11单元有7.61%的第二大损伤概率,而第

图 5 第 11 和 55 单元损伤时由 CoI 改变和贝叶斯融合得到 的损伤概率向量

Fig. 5 Damage probability vector from *CoI* change and Bayesian fusion with 11th and 55th elements damaged

55单元的损伤概率只有 2.71%;把 42个基于 CoS 改 变的损伤概率向量进行贝叶斯融合得到如图 6 所示 的向量,第 55单元有 67.43% 的最大损伤概率,第 11 单元有 8.39% 的第二大损伤概率,其他单元的损伤 概率都少于或等于 4.03%;把所有基于 CoI和 CoS 改变的 84个向量进行贝叶斯融合,可以得到如图 7 所示的损伤概率向量,第 55 单元有 58.59% 的最大 损伤概率,第 11 单元有 20.4% 的第 2 大损伤概率, 其他单元有小于或等于 4.58% 的伪损伤概率。

图 6 第 11 和 55 单元损伤时由 CoS 改变和贝叶斯融合得到 的损伤概率向量

Fig. 6 Damage probability vector from *CoS* change and Bayesian fusion with 11th and 55th elements damaged

说明两处损伤情况时,单独的加速度响应协方差 参数识别损伤位置效果不是很好,而单独的应变响应 协方差参数仍然能识别出损伤位置,但是识别出的第 二个损伤单元的损伤概率较低;CoI和CoS结合起来 并进行贝叶斯融合,则可以成功识别出损伤位置,且 第二个小损伤单元的损伤概率得到明显提高。

5.3 损伤工况3:第7,8单元刚度减少10%,第45单 元刚度减少15%

第7,8单元刚度减少10%,第45单元刚度减少

图 7 第 11 和 55 单元损伤时由 CoI 和 CoS 改变和贝叶斯融 合得到的损伤概率向量

Fig. 7 Damage probability vector from *CoI* and *CoS* change and Bayesian fusion with 11th and 55th elements damaged

15%来模拟3处损伤情况,进行同上位置激励,相同 位置加速度和应变响应计算和噪声添加,然后计算 得到42个基于CoI改变的损伤概率向量,并进行贝 叶斯融合得到如图8所示的向量,第45单元有 13.75%的最大损伤概率,第7单元有8.16%的第3 大损伤概率,第8单元有5.56%的第4大损伤概率, 第9单元则有9.3%的最大伪损伤概率;对42个基 于CoS改变的向量进行贝叶斯融合,得到如图9所 示的向量,第7单元有37.53%的最大损伤概率,第8 单元有 28.25% 的第2大损伤概率,第45单元有 20.84%的第3大损伤概率,而第46单元有4.27%的 最大伪损伤概率;把总共84个向量进行贝叶斯融合 得到如图10所示的向量,第7单元有39%的最大损 伤概率,第45单元有36.5%的第2大损伤概率,第8 单元有20%的第3大损伤概率,而第46单元只有 2.85%的最大伪损伤概率。

该损伤工况分析表明,单独的 CoI 改变能识别 出部分损伤单元,但是有较多的较大概率伪损伤单

图 9 第 7,8 和 45 单元损伤时由 CoS 改变和贝叶斯融合得 到的损伤概率向量

Fig. 9 Damage probability vector from *CoS* change and Bayesian fusion with 7th, 8th and 45th elements damaged

图 10 第7,8和45单元损伤时由 CoI和 CoS 改变和贝叶斯 融合得到的损伤概率向量

Fig. 10 Damage probability vector from *CoI* and *CoS* change and Bayesian fusion with 7th, 8th and 45th elements damaged

元出现;单独的 CoS 改变能识别出所有的损伤单元,有少数伪损伤单元出现;CoI和 CoS 联合使用,则能使损伤单元的损伤概率提高,而伪损伤单元的概率降低,提高了损伤位置识别的精度。

6 简支钢梁实验验证

对如图 11 所示的简支钢梁进行实验室测试,进 一步验证本文提出的损伤识别方法。钢梁长 1996 mm,截面为宽 50.75 mm、深 9.69 mm 的矩形,杨氏 模量为 191.1 GPa,密度为 7790.6 kg/m³,钢梁两端 简支,支座间跨度为 1920 mm,7个应变片被等间距 安装在梁的下表面,7个加速度传感器被安装在上 表面,如图 11 所示。采样频率 2000 Hz,由测试响应 得到的 CoI 和 CoS 中大约包含了结构前 43 阶的模 态参数。在距梁右端 638 mm 处的上表面,用锤子 进行敲击产生振动,使用商用数据采集系统 INV303 和数据分析系统 DASP2003 测试并记录加速度和应 变响应,进行多次重复测试以后,再在距离梁右端 158 mm 左边处,梁的前后表面锯成长 9 mm,宽 0.9 mm,深 9.69 mm 的缺口,如图 12 所示,来制造损伤, 并测试记录简支钢梁损伤后的加速度和应变响应。

图 12 简支钢梁损伤切口 Fig. 12 The cut of the steel beam

通过数据分析系统 DASP2003 的模态分析,可 以得到结构未损伤时和损伤后的 10个频率如表 1 所 示。可以看到这些频率都有一定的改变,但改变幅 度都低于 1%,容易跟噪声和分辨率误差等混淆。

来自第7个加速度计和应变片的钢梁损伤前和

表1 简支梁未损伤和损伤状态时通过模态测试得到的10 阶频率

 Tab. 1
 The first 10 freqencies of the intact and damaged sim ply supported beam from experimentel model tests

未损伤状态/Hz	损伤状态/Hz	改变百分比/%
5.867	5.8960	0.4943
23.647	23.4830	0.6935
53.582	53.2460	0.6271
94.453	93.8030	0.6882
146.960	146.3270	0.4307
213.058	212.0890	0.4548
288.975	287.0720	0.6585
374.510	372.5840	0.5143
476.309	475.4650	0.1772
587.257	586.8980	0.0611

后的加速度和应变响应如图13和图14所示,实线为 简支钢梁未损伤时的加速度或应变响应,虚线为钢 梁损伤后的加速度或应变响应,可以看到相同状态 下,不同测试次数的响应非常接近;而两个不同状态 下的响应有显著的差别,这表明损伤引起了加速度 和应变响应的改变,但是该差别仍然不够显著和直 观,无法定位损伤。

图13 来自第7个传感器的钢梁损伤前后的加速度响应

Fig. 13 The acceleration responses from 7th sensor of the intact and damaged steel beam

由测试加速度响应和应变响应分别计算出加速 度和应变响应协方差参数 CoI和 CoS,并把损伤状 态下各传感器处的 CoI减去未损伤时的 CoI,得到 CoI的改变向量,并由式(11)转化为损伤概率向量; 再对所有的损伤概率向量,进行式(12)所示的贝叶 斯融合,得到最后的损伤概率向量,如图 15 所示。 可以看到第7个传感器有最大的损伤概率,表明损 伤发生在第7个传感器有最大的损伤概率,表明损 伤发生在第7个传感器有超过 20%,第5个传感器有 超过 10% 的伪损伤概率。

当把损伤状态下各传感器处的 CoS 减去未损伤时的 CoS,得到 CoS 的改变向量,并通过贝叶斯融合可以得到如图 16 所示的损伤概率向量,第7个传感器有最大的损伤概率,第3个传感器有 3.42% 的

Fig. 15 Damage probability vector from *CoI* change and Bayesian fusion

Fig. 16 Damage probability vector from *CoS* change and Bayesian fusion

第2大伪损伤概率。

当把 CoI和 CoS 联合使用,并应用贝叶斯融合, 可以得到如图 17 所示的损伤概率向量,第7个传感 器有超过 99% 的损伤概率,第3个传感器有 2.73% 的损伤概率,与实际情况第3 传感器附近无损伤不 一致,这可能是由于测试噪声和误差引起的伪损伤。 可以看到通过 CoI和 CoS 的联合使用,损伤单元附 近传感器的损伤概率更大,而伪损伤单元的概率更

图 17 基于 CoI和 CoS 变化和贝叶斯融合得到的损伤概率 向量

Fig. 17 Damage probability vector from *CoI* and *CoS* change and Bayesian fusion

小,提高了损伤识别的精度。

通过该简支钢梁的实验室测试和数据分析,可 以看到利用本文提出的响应协方差参数和贝叶斯数 据融合方法,通过比较结构损伤前后的各个传感器 处的协方差参数,就能成功识别出损伤的位置,无需 结构分析模型,具有较好的抗噪性能。

7 总 结

本文使用加速度和应变响应协方差参数作为结构动力指标来进行损伤识别,并使用贝叶斯融合提高 识别的精度,对于单损伤情况,两种响应协方差参数 都能正确识别出损伤位置;而对于多损伤情况,加速 度响应协方差参数只能识别出部分损伤位置,会产生 漏判和伪损伤,应变响应协方差参数则具有较好的识 别效果,这可能因为应变响应比加速度响应具有更好 的局部特性;把加速度响应和应变响应协方差参数联 合使用,则可以使得损伤单元的损伤概率更高,伪损 伤单元更少和概率更低,可以改善损伤识别的效果。

本文提出的损伤识别方法主要有如下优点:

第一,信号容易测得;加速度响应和应变响应容 易测量。

第二,响应协方差参数(CoI和CoS)计算简便, 无需进行复杂的信号变换和特征提取。

第三,理论上 CoI和 CoS参数所包含的模态阶数 只受限于数据采样频率,也就是可以尽量多地包含更 多阶数的模态信息,避免丢失响应信号中与损伤有关 的高阶模态,使得建立的损伤指标对损伤更灵敏。

第四,该方法无需结构分析模型,无需人工参与,适合在线连续分析,对噪声鲁棒,更适合实际工程结构健康监测系统的数据分析。

所以该方法具有较好的工程应用前景。当然本 文所提方法也有其自身的局限性,第一、当只使用结 构损伤前后的响应协方差参数,不使用结构分析模 型进行结构损伤识别时,需要传感器测点位置补充 空间信息,所以本文所提方法需要布置较多的传感 器,不能仅依靠一两个传感器实现监测;第二、损伤 向量会受到激励位置、测试噪声等环境因素的影响, 尽管使用了贝叶斯数据融合来减少这种影响,但是 影响仍然是不可避免的。

参考文献:

[1] 赵程程,唐克静.工程结构损伤识别方法的研究[J]. 建筑知识,2016,(2):293-294.

Zhao Chengcheng, Tang Kejing. Research on damage identification methods of engineering structures [J]. Ar-chitectural Knowledge, 2016,(2): 293-294.

- [2] 王 研.基于固有频率变化的桥梁损伤识别[D].南 昌:华东交通大学, 2012.
 Wang Yan. Bridge damage identification based on natural frequency variation [D]. Nanchang: East China Jiaotong University, 2012.
- [3] Pines D, Salvino L. Structural health monitoring using empirical mode decomposition and the Hilbert phase
 [J]. Journal of Sound & Vibration, 2006, 294(1-2): 97-124.
- [4] Housner G W, Bergman L A, Caughey T K, et al. Structural control: Past, present, and future [J]. Journal of Engineering Mechanics, 1997, 123(9):897-971.
- [5] 梁 博.基于动力指纹的网架结构损伤识别实用方法研究[D].西安:西安建筑科技大学,2014.
 LIANG Bo. Research on the practical method of damage identification of network frame structure based on dynamic fingerprint [D]. Xi'an: Xi'an University of Architecture and Technology, 2014.
- [6] 薛明玉.遗传算法和神经网络在结构损伤识别中的应用[D].大连:大连理工大学,2010.
 XUE Ming-yu. Application of genetic algorithm and neural network in structural damage identification [D]. Dalian: Dalian University of Technology, 2010.
- [7] 范 慧.基于遗传算法的序列比对方法的研究[D].长 沙:湖南大学,2012.
 FAN Hui. Research on sequence comparison method based on genetic algorithm [D]. Changsha: Hunan University, 2012.
- [8] 葛哲学,沙 威.小波分析理论与MATLAB 82007实现[J].北京:电子工业出版社,2007:49-97,158-200.
 GE Zhe-xue, SHA Wei. Wavelet Analysis Theory and MATLAB 82007 Implementation [M]. Beijing: Electronic Industry Press, 2007:49-97, 158-200.
- [9] 张 茂,万方义.基于小波包的碰磨信号能量辨识[J]. 机械设计与制造,2006,3(9):143-145.
 ZHANG Mao, WAN Fangyi. Energy identification of collision signal based on wavelet packet [J]. Mechanical Design and Manufacturing,2006,3(9): 143-145.
- [10] 李友荣,曾法力.小波包分析在齿轮故障诊断中的应用
 [J].振动与冲击,2005,24(5):101-103.
 LI You-rong,ZENG Fa-li. Application of wavelet packet analysis in gear fault diagnosis [J]. Journal of Vibration and Shock,2005,24(5):101-103.
- [11] Li X Y, Law S S. Matrix of the covariance of covariance of acceleration responses for damage detection from ambient vibration measurements [J]. Mechanical Systems and Signal Processing, 2010, 24(4):945-956
- [12] Law S S, Lin J F, Li X Y. Structural condition assessment from white noise excitation and covariance of covariance matrix [J]. AIAA Journal, 2012, 50(7): 1503-1512
- [13] 李雪艳,张惠民.基于应变脉冲响应协方差的损伤识别 方法研究[J].力学学报,2017,(05):1081-1090.

149

Li Xueyan, Zhang Huimin. Study on damage identification methods based on the covariance of strain impulse response [J]. Chinese Journal of Theoretical and Applied Mechanics, 2017,(05):1081-1090

- [14] 郭 戈,罗志刚.多传感器数据融合方法的研究与进展[J]. 机电一体化, 2003, 19(5):12-17.
 Guo Ge, Luo Zhigang. Research and development of multi-sensor data fusion methods [J]. Mechatronics, 2003, 19(5):12-17.
- [15] 张延龙,王俊勇.多传感器数据融合技术概述[J]. 舰船电子工程,2013,33(2):41-44.
 Zhang Yanlong, Wang Junyong. Overview of multi-sensor data fusion technology [J]. Ship Electronic Engineering, 2013, 33(2):41-44.
- [16] 黄漫国, 樊尚春, 郑德智,等. 多传感器数据融合技术 研究进展[J]. 传感器与微系统, 2010, 29(3):5-8.
 Huang Manguo, Fan Shangchun, Zheng Dezhi, et al. Research progress of multi-sensor data fusion technology [J]. Transducer and Microsystem Technology, 2010, 29(3):5-8.
- [17] 姜绍飞,王留生,殷晓志,等.结构健康监测中的数据融合技术[J]. 沈阳建筑大学学报(自然科学版),2005,21(1):18-22.
 Jiang Shaofei, Wang Liusheng, Yin Xiaozhi, et al. Da-

ta fusion technology in structural health monitoring [J]. Journal of Shenyang Jianzhu University (Natural Science Edition), 2005, 21(1):18-22.

[18] 徐 毅,金德琨,敬忠良.数据融合研究的回顾与展望[J].信息与控制,2002,31(3):250-255.
 Xu Yi, Jin Dekun, Jing Zhongliang. Review and pros-

pect of data fusion research [J]. Information and Control, 2002, 31(3):250-255.

- [19] 商娟叶.基于数据融合的Bayes估计算法研究[J].自动化与仪器仪表,2016,(2):118-120.
 Shang Juanye. Research on Bayes estimation algorithm based on data fusion [J]. Automation and Instrumentation, 2016,(2):118-120.
- [20] 刘 涛,李爱群,缪长青,等.基于数据融合的结构损伤识别方法研究[J].工程力学,2008,25(1):16-21.
 Liu Tao, Li Aiqun, Miao Changqing, et al. Research on structural damage identification methods based on data fusion [J]. Engineering Mechanics, 2008, 25(1): 16-21.
- [21] 刘西拉, 左勇志. 基于 Bayes 方法的结构可靠性评估和 预测[J]. 上海交通大学学报, 2006, 40(12): 2137-2141.

Liu Xila, Zuo Yongzhi. Structural reliability evaluation and prediction based on Bayes method [J]. Journal of Shanghai Jiao Tong University, 2006, 40(12):2137-2141.

- [22] 杨晓楠.基于贝叶斯统计推理的结构损伤识别方法研究[D].上海:同济大学,2007.
 Yang Xiaonan. Study on structural damage identification methods based on Bayesian statistical inference[D]. Shanghai: Tongji University, 2007.
- [23] Li X Y, Law S S, Wang L X. Health monitoring of inservice bridge deck by covariance of covariance matrix of acceleration [J]. Applied Mechanics & Materials, 2011, 71-78:4808-4814.

Adoption of vibration response covariance and data fusion for damage identification

LI Xue-yan, LIU Li-chang

(MOE Key Laboratory of Disaster Forecast and Control in Engineering, School of Mechanics and Construction Engineering, Jinan University, Guangzhou 510632, China)

Abstract: It has important theory worth and realistic meaning to perform health monitoring for the in-service civil engineering structure and the infrastructure, in order to discover the damage as early as possible, the feasible preventing and repairing measure will be applied in time. Acceleration and strain response covariance and the Bayesian data fusion technique are used for damage occurrence and damage location identification. From the derivation, the response covariance is the function of modal parameters. Structural damage (stiffness reduction) will lead to the change of the response covariance. When damage detection is based on the change of the response covariance between the damaged and intact structural states without the need of an analytical model, the damage vector will be easily affected by excitation location, measurement noise and so on. In order to improve the results, Bayesian fusion is applied to all damage vectors from different kinds of sensors and many measurements under different environments. A seven-floor frame structure is numerically studied with several damage scenarios, which include single and multiple damages, to demonstrate the applicability and availability of the proposed method. Finally, a simply supported steel beam is tested in the lab to verify the method experimentally. The satisfactory results are obtained. The analysis shows that the proposed method is sensitive to structural damage and robust to noise, and is promising for engineering structures.

Key words: damage identification; covariance; Bayesian fusion; acceleration response; strain response

作者简介:李雪艳(1976-),女,副教授。电话:13610213121; E-mail: celixy@jnu.edu.cn