具有负刚度特征的半周摩擦阻尼装置的 开发及应用研究

方国威¹,孙天威¹,彭凌云¹,田杰¹,康迎杰²

(1.北京工业大学工程抗震与结构诊治北京市重点试验室,北京100124;2.清华大学土木工程系,北京100084)

摘要:在消能减震措施中,为达到满意的减震效果,需在建筑结构的多个楼层布置耗能装置,占用了较多的建筑空间,为此提出仅需在底部楼层布置耗能装置的负刚度阻尼消能减震技术方案。为实现该方案,研发了一种力学性能稳定、构造简单,行程大,具有负刚度特征的半周摩擦阻尼装置。通过性能试验验证了该装置能够实现预期的滞回模型,进行了单自由度体系和框架结构的减震模拟分析,结果表明,采用半周摩擦阻尼装置进行减震可以增大结构 阻尼、延长结构周期、对结构地震响应起到理想的控制效果。

关键词:减震;负刚度装置;半周摩擦阻尼装置;性能试验;数值模拟
中图分类号:TU352 文献标志码:A 文章编号:1004-4523(2021)02-0347-10
DOI:10.16385/j.cnki.issn.1004-4523.2021.02.015

引 言

近年来,随着消能减震技术的发展^[12],在建筑 物楼层中布置阻尼装置来消耗结构振动能量、减小 结构地震响应,已成为提升结构抗震性能的主要措 施。一般情况下,消能减震技术需要在建筑物的多 个楼层布置阻尼装置^[34],一方面占用了较多的建筑 使用空间,另一方面阻尼器连接部件和预埋件数量 过多也会导致安装成本过高。负刚度阻尼消能减震 方案可以很好解决此问题:在底部楼层布置一定数 量的负刚度阻尼装置,通过负刚度特征降低结构底 层的等效刚度,延长结构的振动周期,形成等效的隔 震层,减小上部楼层的地震作用;通过消能机制增加 结构的阻尼、控制等效隔震层的位移响应。部分学 者开展了负刚度阻尼装置研发及应用方面的研究 工作。

文献[5-9]中提出将负刚度装置与黏滞阻尼器 联合使用的负刚度减震装置,进行了缩尺模型试验 和有限元模拟,可达到比较理想的减震效果。文献 [10-16]中利用磁流变装置提出了一种负刚度减震 装置,研究表明在地震作用下该装置对结构的减震 效果优于普通黏滞阻尼器。孙彤和李宏男等利用滚 轮、预压弹簧和轨道滑块设计了一种负刚度装 置^[17-19],对该装置进行了数值模拟和振动台试验,结

收稿日期:2019-12-10;**修订日期:**2020-05-29 **基金项目:**国家自然科学基金重点资助项目(51738001) 果表明该装置对基础剪力、层间位移和楼层加速度 的控制效果显著。Reza Mirza Hessabi等^[20]、孙飞飞 等^[21]利用惯性力进行了齿轮惯性质量阻尼器的研 究,研究表明该装置具有负刚度特性。汪志昊等将 电磁阻尼器与惯性质量单元进行并联^[22],开展了斜 拉索减振效果分析,结果表明惯性质量可以显著提 高斜拉索阻尼器的减振效果。综上可以看出,负刚 度阻尼装置对结构的减震(振)控制是十分有效的。 现阶段实现负刚度阻尼特征的技术途径普遍存在构 造复杂、阻尼吨位较小的问题。

本文提出一种半周摩擦阻尼滞回模型,对包含 该阻尼单元的单自由度结构在简谐激励下的稳态响 应和在地震动作用下的动力响应进行了分析,验证 了半周摩擦阻尼具有负刚度阻尼特征,且减震效果 良好;研发了实现半周摩擦阻尼的减震装置,通过性 能试验对其滞回性能进行了验证;最后以某实际混 凝土框架结构为例,对在底部楼层布置半周摩擦阻 尼装置的减震方案和常规减震方案进行了对比 研究。

1 半周摩擦阻尼滞回模型及减震效果

1.1 滞回模型及稳态响应的负刚度阻尼特征

图 1(a)为本文提出的半周摩擦阻尼滞回模型: 加载阶段,变形从原点增加至正负幅值处,阻尼力值

(b) 组合体系阻尼模型(b) Composite system hysteretic model

图1 半周摩擦阻尼滞回模型及组合体系阻尼模型

Fig. 1 Half-cycle friction damping hysteretic model and composite system hysteretic model

为0;卸载阶段,变形从正负幅值处返回至原点,该 模型提供摩擦阻尼力来阻止结构的运动。显然,半 周摩擦阻尼模型可以看作是在屈服后刚度为0的弹 塑性模型基础上、去掉加载时阻尼力贡献得到的,即 一、三象限阻尼力为0。图中f,和u,分别为该模型 的屈服力和卸载弹性刚度对应的屈服位移,b为最 大位移。

质量*m*、刚度*k*、阻尼系数*c*的单自由度结构(振动频率 $\omega_0 = \sqrt{k/m}$ 、阻尼比 $\zeta_0 = c/(2m\omega_0)$),在加入 半周摩擦阻尼单元后,其在 $p = -ma\sin(\eta\omega_0 t)$ 激励下的动力平衡方程为(η 为激励频率与结构频率 比值)

$$\ddot{x}(t) + 2\zeta_0 \omega_0 \dot{x}(t) + \omega_0^2 x(t) + \frac{g(x, \dot{x})}{m} = \frac{p}{m}$$
(1)

结构刚度与半周摩擦阻尼叠加后可得结构整体的力-位移曲线如图1(b)所示。设结构稳态响应为 $x = b \sin(\eta \omega_0 t + \theta_0)$ 。给定阻尼参数(f_y, u_y)、结构参数(ω_0, ζ_0),结构稳态响应振幅b将由输入参数(a, η)确定。基于文献[23-24]的慢变参数法,可得包含频率比 η 和振幅b的单自由度慢变参数法平方和求解公式

$$\left(\eta^{2} - 1 + \frac{2}{\pi} \frac{f_{y}}{bk} - \frac{4\sqrt{2}}{3\pi} \frac{f_{y}}{bk} \sqrt{\frac{u_{y}}{b}}\right)^{2} + \left[\frac{1}{\pi} \frac{f_{y}}{ku_{y}} \frac{u_{y}}{b} \left(2 - \frac{u_{y}}{b}\right)\right]^{2} = \left(\frac{ma}{bk}\right)^{2}$$
(2)

对式(2)中η和*b*求偏导,可得使振幅*b*取极大 值时激励频率比的近似解为

$$\eta_{e}^{2} = 1 - \frac{1}{\pi} \frac{f_{y}}{bk} \left(2 - \frac{4\sqrt{2}}{3} \sqrt{\frac{u_{y}}{b}} \right)$$
(3)

类比于共振行为,可将上述非线性单自由度结构在输入参数(a,η)条件下的等效频率定义为 $\omega_e = \eta_e \times \omega_0$,进而其等效刚度为

$$k_e = k - \frac{2f_y}{\pi b} \left(1 - \frac{2\sqrt{2}}{3} \sqrt{\frac{u_y}{b}} \right) \tag{4}$$

上式的右边括号内计算结果大于0,即半周摩 擦阻尼的加入减小了结构的等效刚度,半周摩擦阻 尼模型等效负刚度记为

$$k_{N} = -\frac{2f_{y}}{\pi b} \left(1 - \frac{2\sqrt{2}}{3} \sqrt{\frac{u_{y}}{b}} \right) \tag{5}$$

半周摩擦阻尼在结构振动一周消耗的能量即为 图1中滞回曲线所包围的面积,其等效阻尼比为^[25]

$$\zeta_{\epsilon} = \frac{f_{y}(2b - u_{y})}{2\pi k_{\epsilon}b^{2}} \tag{6}$$

公式(4)和(5)给出了半周摩擦阻尼模型的负刚 度贡献,公式(6)表明了该模型的阻尼贡献。

1.2 半周摩擦阻尼单自由度减震分析

基于 SAP2000 软件对单自由度体系进行半周 摩擦阻尼减震分析,单自由度体系相关参数如表1 所示。通过并联 Wen 单元和 MultiLinear Elastic 单 元的方法对半周摩擦阻尼滞回模型进行模拟,该模 型屈服力为1.2 kN,其提供的等效负刚度如表2所 示。将该模型与原单自由度体系并联一起组成单自 由度半周摩擦减震体系。

表1 单自由度体系参数 Tab.1 Parameters of single degree of freedom

第一振型周期/	质量/	刚度/	阻尼系数/
s	kg	$(kN \cdot m^{-1})$	$\left[kN\boldsymbol{\cdot}(m\boldsymbol{\cdot} s^{\scriptscriptstyle -1})^{\scriptscriptstyle -1}\right]$
0.80	1000	61.69	0.79

对该体系进行非线性时程分析,峰值加速度为 0.4g。地面运动加速度记录的相关信息如表3所 示,地震动加速度时程曲线及反应谱见图2和3。

半周摩擦阻尼减震体系层间位移输出结果、滞 回模型提供的等效负刚度及负刚度比如表2所示, 其中等效负刚度根据式(5)求出。

表 2 最大层间位移及等效负刚度 Tab. 2 Maximum story drift and equivalent negative

	stimiess				
地震动名称	抽零动夕称	最大层间	等效负刚度	负刚度	
	位移/mm	$/(kN \cdot m^{-1})$	比/%		
	Duzce	84.11	9.08	14.72	
	Northridge-01	63.87	11.96	19.39	
	Loma Prieta	50.81	15.04	24.38	
	Chi-Chi	62.48	12.23	19.83	

表 3 地震动基本信息 Tab. 3 Seismic wave basic information

地震动名称	年份	震级	地震台	类型
Duzce	1999	7.1	Duzce	近场地震
Northridge-01	1994	6.7	Northridge-Saticoy	近场地震
Loma Prieta	1989	6.9	Capitola	远场地震
Chi-Chi	1999	7.6	TCU045	远场地震

以Loma Prieta 波为例,图4为原单自由度体系和半周摩擦阻尼减震体系顶点加速度时程变化曲线对比,从图中两个峰值点间的距离来判断周期的变化,可以看出,半周摩擦阻尼减震方案可以延长体系

Fig. 3 Response spectrum of seismic waves

图 4 Loma Prieta 波下顶点加速度时程曲线和局部放大图

Fig. 4 Time history curve and local enlargement of vertex acceleration of Loma Prieta

周期。四条地震动下周期平均延长10.57%,结构周期的具体变化如表4所示。

表 4 周期变化(单位:s) Tab.4 Periodic change (Unit:s)

地震动名称	原结构	半周摩擦 阻尼结构	延长率/%	
Duzce	0.69	0.73	5.80	
Northridge-01	0.30	0.37	23.33	
Loma Prieta	0.78	0.83	6.41	
Chi-Chi	0.89	0.95	6.74	

表5可以看出,单自由度体系在半周摩擦阻尼 减震方案下,可以有效减小体系变形和层剪力,同时 该方案下顶点加速度响应的控制效果良好。

表 5 减震率/% Tab. 5 Shock absorption rate/%

地震动名称	层间位移角	层剪力	顶点加速度
Duzce	43.17	43.23	33.45
Northridge-01	14.38	14.32	10.24
Loma Prieta	37.09	37.13	23.29
Chi-Chi	27.82	27.79	15.53
平均值	30.62	30.62	20.63

综上可知,半周摩擦阻尼滞回模型能够同时提 供负刚度和阻尼,从而对单自由度体系的变形、层剪 力和加速度起到良好的减震效果。

2 半周摩擦阻尼装置及其力学模型

2.1 装置构造及原理

基于传统摩擦阻尼器和棘轮单向作用原理,提 出了一种具有负刚度特征的半周摩擦阻尼装置,主 要由单向轴承、齿轮、摩擦轴、齿条、摩擦板和施压板 共同组成,如图5所示。通过消除加载阶段的摩擦 力,只保留卸载阶段的摩擦力来实现等效负刚度的 产生。

Fig. 5 Schematic diagram of half-cycle friction damping de vice

初始状态,齿条两侧的前后端各有一个齿轮摩 擦装置。加载阶段,齿条与齿轮产生啮合,齿轮带动 单向轴承产生转动,单向轴承产生空转(空转方向如 图5(b)箭头所示方向),单向轴承内圈不发生转动, 即单向轴承不带动摩擦轴转动,与摩擦板不产生摩 擦,达到加载阶段不产生摩擦力的目的,单向齿轮摩 擦装置如图6所示。卸载阶段,单向轴承内圈带动

摩擦轴产生转动,摩擦轴转动时与施压板挤压的摩 擦板产生摩擦力,达到卸载阶段产生摩擦力的目的。 滞回曲线消除了摩擦滞回的一、三象限,形成只有 二、四象限的摩擦滞回曲线,其等效刚度呈负刚度。

2.2 工作状态受力分析

如图 7(a)所示,当在轨道的齿条从初始位置向 右幅值处移动时,单向轴处于空转状态,此时阻尼力 为 0;如图 7(b)所示,当齿条从右侧幅值处回到初始 位置时,单向轴会带动摩擦轴与摩擦板进行摩擦,提 供阻碍其运动的阻尼力 *F*_p。其阻尼力表达式如下

$$F_{\rho} = \begin{cases} 0, & m 載阶段\\ \operatorname{sgn}(\dot{x}) \mu n F_{N}, & 師 載阶段 \end{cases}$$
(7)

式中 \dot{x} 为齿条远离初始位置时的速度; μ 为摩擦轴 与摩擦板之间的摩擦系数;n为转动时的齿轮个数; F_N 为螺栓挤压摩擦板产生的压力。

(b) Uninstall figure 图 7 工作状态图 Fig. 7 Working state

3 半周摩擦阻尼装置性能试验

3.1 装置参数

半周摩擦阻尼装置选用Q345钢材进行加工, 摩擦轴与摩擦板之间的摩擦系数为0.30,采用分度 圆直径为50mm,厚度为11mm,模数为2.5M的齿 轮和长90mm,厚度为13mm,模数为2.5M的齿条。 装置主要尺寸参数如表6所示。

3.2 性能试验及结果

图 8 为半周摩擦阻尼装置试验照片,试验加载 幅值为 30 mm,循环次数为 10 次,由于摩擦型阻尼 器的滞回曲线不受加载频率的影响^[26],选取 0.1 Hz 的加载频率进行性能试验。

整理数据得到如图9所示装置的滞回曲线。可

表6 装置主要尺寸				
Tab. 6 Main siz	es of device			
名称	尺寸/mm			
外观长度	500			
外观宽度	130			
外观高度	56			
单向轴承直径	35			
摩擦轴直径	15			
摩擦板厚度	10			
阻尼器最大行程	90			

图 8 半周摩擦阻尼装置试验照片 Fig. 8 Test photo of half-cycle friction damping device

以看出:半周摩擦阻尼装置仅在从正负振幅位置回 向初始位置时才提供摩擦阻尼力,其提供的等效负 刚度为4.25 kN/m,具有明显的半周摩擦滞回特征。

Fig. 9 Experimental hysteretic loops of half-cycle friction damping device

4 半周摩擦阻尼减震数值模拟

4.1 结构模型

如图10所示,该结构为四层混凝土框架结构,

图 10 结构模型 Fig. 10 Structural model

建筑平面呈矩形分布,沿y向的主梁间设置单根次 梁。结构自重为1800t,第一阶振型周期0.41s。结 构基本布局:纵向(x向)5跨,跨度6m,横向(y向)3 跨,跨度4m,每层层高3.6m。混凝土强度等级 C30,纵筋和箍筋分别采用HRB335和HPB300。基 本设计参数如表7所示,结构尺寸如表8所示。

表 7 模型基本设计参数 Tab. 7 Basic design parameters of the model

名称	参数	名称	参数
建筑结构设计使用年限	50 年	抗震设防类别	乙类
设计地震分组	第二组	抗震设防烈度	8度(0.2g)
场地类别	Ⅲ类	场地特征周期	0.55 s
恒载	3 kN/m^2	活载	$3 \ kN/m^2$

表8 结构尺寸参数

Tab. 8 Parameters of structure	re size
--	---------

名称	尺寸
立柱截面/(mm×mm)	700×700
主梁/(mm×mm)	700×300
次梁/(mm×mm)	600×300
板厚/mm	120

4.2 地震动输入

选取了与1.2相同的2条近场波和2条远场波 进行非线性时程分析,峰值加速度为0.4g。地面运 动加速度记录的相关信息如表3所示,地震动加速 度时程曲线及反应谱如图2和3所示。

4.3 减震方案设计及控制效果

采用两种减震方案:半周摩擦阻尼器减震和黏 滞阻尼器减震,两种方案下的阻尼器布置位置、数量 及参数根据附加阻尼比为4%设计,阻尼器数量和 附加阻尼比如表9所示。

半周摩擦阻尼器减震方案仅在结构一、二层布 置半周摩擦阻尼装置,每层在纵向(x向)上对称布

表9 阻尼器数量和附加阻尼比

Tab. 9	Number of	dampers and	additional	damping	ratio
--------	-----------	-------------	------------	---------	-------

方案名称	阻尼器数量	附加阻尼比/%
半周摩擦阻尼器减震	8	3.93
黏滞阻尼器减震	16	4.08

置4个,一层和二层侧移刚度分别为1.35×10⁶和 7.8×10⁵ kN/m,单个阻尼器最大屈服力为600 kN, 具体布置如图11所示。

图 11 半周摩擦阻尼装置布置方案 Fig. 11 Layout of half-cycle friction damping device

黏滞阻尼器减震方案在结构一至四层布置黏滞 阻尼器,每一层的布置方式和数量与半周摩擦阻尼 器减震方案一致,阻尼器的阻尼系数为500 kN/(m/ s),阻尼指数为0.45。

半周摩擦阻尼减震结构一、二层最大层间位移 输出结果、滞回模型提供的等效负刚度及负刚度比 如表10所示,其中等效负刚度根据式(5)求出。

表 10 最大层间位移及等效负刚度 Tab. 10 Maximum story drift and equivalent negative

stiffness

50000				
地震动名称	最大层间 位移/mm		等效负刚度/ (kN·m ⁻¹)	负刚度 比/%
Duzce	一层	15.96	9.58×10^{4}	7.10
	二层	25.89	5.90×10^{4}	7.57
Northridge- 01	一层	7.76	1.97×10^{5}	14.62
	二层	12.55	1.22×10^{5}	15.62
Loma Prieta	一层	9.40	1.63×10^{5}	12.08
	二层	15.79	9.68×10^{4}	12.41
Chi-Chi	一层	8.04	1.90×10^{5}	14.06
	二层	13.09	1.17×10^{5}	14.98

图 12 为两种减震方案下结构层间位移角的控制效果。其中,半周摩擦阻尼减震方案首层层间位移角平均减震率为 28.90%,二层至四层分别为 26.47%,21.64%和17.60%。可以看出,半周摩擦 阻尼装置对布置阻尼器的楼层和上部结构的变形可 以起到与黏滞阻尼器减震方案相同的控制效果。

表11为两种方案下对结构基底剪力的减震效

表 11 基底剪力减震效果(单位:kN) Tab. 11 Damping effect of base shear(Unit:kN)

地震动名称	原结构	黏滞阻尼 结构	半周摩擦 阻尼结构
Duzce	30733	23750	21513
Northridge-01	15748	11946	10461
Loma Prieta	19327	15599	12360
Chi-Chi	13574	11596	11140

果。可以看出,半周摩擦阻尼减震方案由于负刚度 装置的加入,使得结构楼层刚度减小,有效降低了结 构基底剪力,平均减震率为30.12%,优于黏滞阻尼 减震方案下的20.77%。

图 13 为结构楼层层剪力的变化。可以看出,半 周摩擦阻尼装置的加入可控制上部结构反应从而降 低层剪力,4条地震动下结构层剪力平均降低 24.57%,黏滞阻尼器减震方案下的减震率为 23.06%,两种方案可以起到相同的减震效果。

图 14 为原结构和半周摩擦阻尼减震结构在地 震时输入到结构中的能量对比,可以看出由于加入 半周摩擦阻尼装置减小了楼层刚度,导致输入到结

Fig. 14 Input energy of different seismic waves

构中的能量有效减少,使结构在地震中所受实际地 震作用减小。结合图2,由于前期地震动能量输入 较小,使得能量变化不明显,随着地震动能量逐渐增 大,输入到结构中的能量有明显减小,且在地震动峰 值处效果显著。

图 15 给出了原结构和半周摩擦阻尼减震结构 顶点加速度时程变化曲线对比。由图可知,该方案 能够很好地降低上部结构响应,当地震来临时既能 保护结构本身,又能保证结构内部重要财产的 安全。

从图 15 中两个峰值点间的距离来判断周期的 变化。可以看出,半周摩擦阻尼减震方案可以延长 结构周期,四条地震动作用下周期平均延长

图 15 顶点加速度时程曲线和局部放大图

Fig. 15 Time history curve and local enlargement of vertex acceleration

11.94%,结构周期的具体变化如表12所示。

表12 周期变化(单位:s) Tab. 12 Periodic change(Unit:s)

地震动名称	原结构	半周摩擦 阻尼结构	延长率/%
Duzce	0.41	0.47	14.63
Northridge-01	0.42	0.45	7.14
Loma Prieta	0.28	0.33	17.86
Chi-Chi	0.37	0.40	8.11

结 论 5

基于摩擦阻尼器和棘轮的单向作用原理,研发 了一种力学性能稳定、行程较大、构造简单、具有负 刚度特征的半周摩擦阻尼装置,对其进行了力学性 能试验和单自由度体系与结构模型的数值模拟分 析,主要结论如下:

(1)通过力学性能试验验证了该装置可以实现 预期的具有负刚度特征的滞回模型;

(2)数值模拟表明了在结构底部布置半周摩擦 阻尼装置,可以有效降低结构基底剪力,延长结构周 期,减少地震能量输入,对结构变形、层剪力和加速 度起到良好的控制作用,显著提高结构抗震性能;同 时相比传统消能减震方案,还具有节约成本、节省空 间的优势。

参考文献:

- [1] 周 云, 商城豪, 张 超. 消能减震技术研究与应用进 展[J].建筑结构,2019,49(19):33-48. ZHOU Yun, SHANG Cheng-hao, ZHANG Chao. Research and application progress of energy dissipation and damping technology [J]. Building Structure, 2019, 49 (19):33-48.
- [2] 许立言,聂 鑫,庄亮东,等.基于混合消能减震技术的 组合结构独柱高架站台抗震性能研究[J].建筑结构学 报,2019,40(5):50-62.

XU Li-yan, NIE Xin, ZHUANG Liang-dong, et al. Seismic performance of composite single-column elevated station with hybrid energy dissipation technique [J]. Journal of Building Structures, 2019, 40(5): 50-62.

[3] 李 娜,井彦青,冯 健,等.临沂华润中心消能减震结 构设计[J].建筑结构,2019,49(12):32-36. LI Na, JING Yan-qing, FENG Jian, et al. Structure design of energy dissipation in Linyi China Resources Center[J]. Building Structure, 2019, 49(12): 32-36.

筑结构,2018,48(S2):369-373.

SHEN Fei. Energy dissipation design and elasto-plastic analysis of a comprehensive structure[J]. Building Structure, 2018,48(S2):369-373.

- [5] Pasala D T R, Sarlis A A, Nagarajaiah S, et al. Adaptive negative stiffness: New structural modification approach for seismic protection [J]. Journal of Structural Engineering, 2013,139(7):1112-1123.
- [6] Sarlis A A. Negative stiffness device for seismic protection of structures[J]. Journal of Structural Engineering, 2013, 139(7): 1124-1133.
- [7] Pasala D T R, Sarlis A A, Reinhorn A M, et al. Apparent weakening in SDOF yielding structures using a negative stiffness device: Experimental and analytical study[J]. Journal of Structural Engineering, 2015, 141 (4): 04014130.
- [8] Pasala D T R, Sarlis A A, Reinhorn A M, et al. Simulated bilinear-elastic behavior in a SDOF elastic structure using negative stiffness device: Experimental and analytical study [J]. Journal of Engineering Structural, 2014, 140(2): 04013049.
- [9] 王 冲.负刚度装置在连续梁桥上的减隔震分析研究
 [D].西安:长安大学,2016.
 WANG Chong. Study on isolated seismic of negative stiffness device in continuous girder bridge[D]. Xi'an: Chang'an University, 2016.
- [10]付杰,熊世树,纪晗,等.多自由度结构的拟负刚度阻尼器减振效果分析[J].华中科技大学学报(自然科学版),2014,42(2):46-50.
 FU Jie, XIONG Shi-shu, JI Han, et al. Analyzing vibration reduction effect of multi-degree of freedom structures using pseudo-negative-stiffness dampers [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2014,42(2):46-50.
- [11]纪 晗,熊世树,袁 涌.基于负刚度原理的结构隔震效果分析[J].华中科技大学学报(自然科学版),2010, 38(2):76-79.

JI Han, XIONG Shi-shu, YUAN Yong. Analyzing vibration isolation effect of structures using negative stiffness principle [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2010,38(2):76-79.

[12] 纪 晗,熊世树,袁 涌,等.基于负刚度原理的结构 减震效果理论分析[J].振动与冲击,2010,29(3): 91-94.

> JI Han, XIONG Shi-shu, YUAN Yong, et al. Influence analysis of the structural seismic reduction effect based on negative stiffness principle [J]. Journal of Vibration and Shock, 2010, 29(3):91-94.

[13] Iemura H, Pradono M H. Application of pseudo-nega-

tive stiffness control to the benchmark cable-stayed bridge[J]. Journal of Structural Control, 2003, 10(3-4): 187-203.

- [14] Iemura H, Pradono M H. Simple algorithm for semi-active seismic response control of cable-stayed bridges
 [J]. Journal of Earthquake Engineering and Structural Dynamics, 2005, 34(4-5):409-423.
- [15] Iemura H, Igarashi A, Pradono M H, et al. Negative stiffness friction damping for seismically isolated structures [J]. Journal of Structural Control and Health Monitoring, 2006,13:775-791.
- [16] Iemura H, Pradono M H. Advances in the development of pseudo-negative-stiffness dampers for seismic response control [J]. Journal of Structural Control and Health Monitoring, 2009,16(7-8):784-799.
- [17] 孙 彤.负刚度减震系统的理论和试验研究[D].大连:大连理工大学,2017.
 SUN Tong. Theoretical and experimental studies on vibration control system with negative stiffness device [D]. Dalian: Dalian University of Technology, 2017.
- [18] 孙 彤,李宏男,赖志路,等.采用轨道式负刚度装置的结构减震控制研究[J].振动工程学报,2017,30
 (3):449-456.

SUN Tong, LI Hong-nan, LAI Zhi-lu, et al. Study on structural vibration control using curve-based negative stiffness device [J]. Journal of Vibration Engineering, 2017,30(3):449-456.

- [19] 李宏男,孙 彤.轨道式负刚度控制系统的优化设计
 [J].地震工程与工程振动,2018,38(1):21-27.
 LI Hong-nan, SUN Tong. Optimal design for rail-type negative stiffness control system [J]. Journal of Earth-quake Engineering and Engineering Dynamics, 2018,38 (1):21-27.
- [20] Hessabi Reza Mirza, Mercan Oya. Investigations of the application of gyro-mass dampers with various types of supplemental dampers for vibration control of building structures [J]. Engineering Structures, 2016, 126: 174 -186.
- [21] 孙飞飞,杨嘉琦.工业精度大齿轮惯性质量阻尼器动力 试验及干扰因素分析[J].北京工业大学学报,2019,45 (3):229-235.

SUN Fei-fei, YANG Jia-qi. Dynamic experiment of gyro-mass damper with industrial precision and analysis of interference factors [J]. Journal of Beijing University of Technology, 2019,45(3):229-235.

[22] 汪志昊, 部 辉, 许艳伟, 等. 惯性质量对斜拉索阻尼器 减振增效作用试验研究[J]. 振动工程学报, 2019, 32 (3): 377-385.

WANG Zhi-hao, GAO Hui, XU Yan-wei, et al. Experimental study on the improving effect of inertial mass on vibration control of stay cables with dampers[J].Journal of Vibration Engineering, 2019, 32(3): 377-385.

- [23] 彭凌云.向心式摩擦阻尼器的理论分析及应用研究
 [D].北京:北京工业大学,2004.
 PENG Ling-yun. Theoretic analysis and application research on energy dissipating restraint [D]. Beijing: Beijing University of Technology, 2004.
- [24] Caughey T K. Sinusoidal excitation of a system with bilinear hysteresis [J]. Journal of Applied Mechanics, 1960, 27(4):640-643.
- [25] 中华人民共和国住房和城乡建设部.GB 50011-2010,

建筑抗震设计规范[S].北京:中国建筑工业出版社, 2010.

Ministry of Housing and Urban-Rural Development of the People's Republic of China. GB 50011-2010, Code for seismic design of buildings [S]. Beijing: China Architecture & Building Press, 2010.

 [26]周云.摩擦耗能减震结构设计[M].武汉:武汉理 工大学出版社,2006.
 ZHOU Yun. Structural Design of Friction Energy Dissi-

pation [M]. Wuhan: Wuhan University of Technology Press, 2006.

Development and application of half-cycle friction damping device with negative stiffness characteristic

FANG Guo-wei¹, SUN Tian-wei¹, PENG Ling-yun¹, TIAN Jie¹, KANG Ying-jie²

(1. Beijing Key Lab of Earthquake Engineering and Structural Retrofit, Beijing University of Technology, Beijing 100124, China; 2. Department of Civil Engineering, Tsinghua University, Beijing 100084, China)

Abstract: Half-cycle friction damping device with negative stiffness characteristic, which only needs to be arranged at the bottom floors to dissipate energy and reduce shock, is proposed in this work. Due to the stable mechanical properties, simple structure, and large stroke of this device, it can be readily applied in engineering. The expected hysteretic model is obtained by the performance test. Shock absorption simulation analysis for single degree of freedom and frame structure is realized in this work. The results indicate that the half-cycle friction damping device can increase structural damping, extend structure cycle and control the seismic response of the structure.

Key words: shock absorption; negative stiffness device; half-cycle friction damping device; performance test; numerical simulation

作者简介:方国威(1995-),男,硕士研究生。电话:18522206014;E-mail:15902224801@163.com 通讯作者:彭凌云(1976-),男,教授。电话:13911322088;E-mail:ply@bjut.edu.cn