一种基于再生混凝土的装配式结构 抗震性能试验研究

李 想^{1,2}, 孙建刚², 张书进¹, 王尊策¹, 徐 蕾², 崔利富², 沙 东³

(1.东北石油大学机械科学与工程学院,黑龙江大庆163318;2.大连民族大学土木工程学院,辽宁大连116650;3.大连理工大学建筑工程学部,辽宁大连116023)

摘要:为了研究低成本抗震节能结构体系,进行了以建筑垃圾为骨料的再生混凝土力学性能试验。对再生混凝土 剪力墙进行了拟静力试验,分析了以建筑垃圾为骨料的再生混凝土剪力墙承载力、破坏形态以及滞回特性。提出一 种隔震装置以及装配式结构,通过模拟地震动振动台试验分析隔震结构在地震作用下的抗震性能并检验隔震装置 的有效性。结果表明:再生混凝土的力学性能随着聚丙烯纤维的加入而提高;再生混凝土剪力墙具有较高的抗震性 能和承载能力;装配式结构洞口处和墙柱连接处为薄弱部位,地震作用下洞口处裂缝呈现X形分布,墙柱连接处几 乎形成贯通的裂缝。在不同地震波作用下,隔震后结构沿高度方向上的振动趋于整体平动,表明该隔震装置对于结 构隔离地震作用具有一定的效果,但该隔震装置的隔震效果与输入地震波的频谱特性有关,设计时,需要选择适当 的场地。

关键词:隔震结构;建筑垃圾;振动台试验;新型装配式结构;拟静力试验
中图分类号:TU352.12 文献标志码:A 文章编号:1004-4523(2021)05-0899-12
DOI:10.16385/j.cnki.issn.1004-4523.2021.05.003

引 言

占中国总建筑面积50%以上的村镇建筑发展缓 慢,研究装配式低层村镇建筑结构体系成为村镇发展 和建设的迫切需求。基于中国村镇建筑量大、面广, 村镇经济发展落后、抗震节能技术薄弱的现状,研究 采用建筑垃圾为骨料的低层装配式隔震结构具有较 强的现实意义。国内外学者对于低层装配式结构进 行了大量的研究, Goggins等[1]、Landolfo等[2]、Pourabdollah等^[3]较早进行了薄壁轻钢结构体系的研究,并进 行了大量的轻钢龙骨复合墙体抗侧性能试验与理论 分析。Hu等^[4]提出了一种新型装配整体式双层钢管 混凝土框架体系,并对3个1/2比例的试件进行低周 反复荷载试验。Henry等^[5]通过设置软钢阻尼器以提 高预制混凝土剪力墙结构的耗能能力。Marriott等^[6] 采用软钢阻尼器提高预制后张拉摇摆墙结构的抗震 性能。钱稼茹等^[7]基于带边框的混凝土夹芯轻墙结 构,研发了SW建筑结构体系;贾穗子等^[8]提出一种装 配式轻钢边框-单排配筋薄墙板组合结构,并对其进行 了底周反复荷载试验。王维等¹⁹为研究预制混凝土剪 力墙隔震结构(PCSW)的抗震性能,进行PCSW的隔 震结构和非隔震结构缩尺比例模型的振动台试验。 袁涌等^[10]研究了高阻尼隔震支座的水平刚度和耗能 特性。

已有研究大多集中于普通混凝土装配式结构的抗震性能分析,并未针对采用建筑垃圾为骨料的 新型装配式隔震结构^[11-16]进行深入的探讨,特别是 缺乏低成本装配式隔震结构的地震动试验。鉴于 此,本文对以建筑垃圾为骨料的再生混凝土进行了 力学性能试验。在此基础上对再生混凝土剪力墙 进行了墙体设计和拟静力试验,分析了其抗震性 能。提出一种新型隔震装置以及基于再生混凝土 的新型装配式结构,通过振动台试验分析隔震结构 在地震作用下的抗震性能,并检验新型隔震装置的 有效性。

1 再生混凝土力学性能试验

1.1 试验材料

本文采用42.5R级普通硅酸盐水泥,再生细骨 料和再生粗骨料为大连金石滩某拆除建筑废弃混凝 土经过破碎、清洗和筛分制得,实测再生细骨料粒径

收稿日期:2020-03-27;**修订日期:**2020-09-23 **基金项目:**国家自然科学基金资助项目(51878124)

900

小于5mm,再生粗骨料粒径为5-32mm,再生骨料 物理性质如表1所示。本文采用加入聚丙烯纤维的 方法提高再生混凝土的强度,聚丙烯纤维物理性质 如表2所示。

表1 冉生曾料物埋性质
农 再生有科物理性质

Tab. 1 Physical properties of recycled concrete								
压碎指标	粗骨料表观	粗骨料堆积	粗骨料	粗骨料	细骨料表观	细骨料堆积	细骨料	
	密度/(kg·m ⁻³)	密度/(kg·m ⁻³)	含泥量	吸水率/%	密度/(kg·m ⁻³)	密度/(kg·m ⁻³)	吸水率/%	
21.60%	2778	1267	0.70	11.70	2993	1455	1.20	

表2 聚丙烯纤维物理性质 Tab. 2 Physical properties of polypropylene fibers

规格/mm	密度/(g·cm ⁻³)	弹性模量/GPa	熔点/℃	纤维直径/μm	抗拉强度/MPa	燃点/℃	断裂延伸率/%
12-19	0.91	≥3.5	约160	31	≥400	约 580	30

1.2 再生混凝土配合比设计

根据再生细骨料和再生粗骨料的物理性质,采 用不同水胶比将再生混凝土的配合比分为A组、B 组和C组。基于环保、经济及材料强度等因素,在进 行配合比设计时分别加入聚丙烯纤维和粉煤灰,同 时鉴于该再生混凝土中的再生骨料吸水率较高,故 加入附加水,具体配合比设计如表3所示。

Tab. 3Recycled concrete mix(Unit:kg/m³)								
组号	水胶比	水	水泥	再生细骨料	再生粗骨料	粉煤灰	聚丙烯纤维	附加水
A1	0.5	220.9	353.4	735.6	1102.3	88.4	0	42.3
A2	0.5	220.9	441.8	735.6	1102.3	0	0	42.3
A3	0.5	220.9	353.4	735.6	1102.3	88.4	1.2	42.3
A4	0.5	220.9	441.8	735.6	1102.3	0	1.2	42.3
B1	0.55	235	340.8	735.6	1102.2	87	0	42.3
B2	0.55	235	427.7	735.6	1102.2	0	0	42.3
В3	0.55	235	340.8	735.6	1102.2	87	1.2	42.3
B4	0.55	235	427.7	735.6	1102.2	0	1.2	42.3
C1	0.6	248.3	330.2	735	1102.5	82	0	42.3
C2	0.6	248.3	414.7	735	1102.5	0	0	42.3
C3	0.6	248.3	330.2	735	1102.5	82	1.2	42.3
C4	0.6	248.3	414.7	735	1102.5	0	1.2	42.3

表3 再生混凝土配合比(单位:kg/m³)

参照文献[17]制作和养护36个再生混凝土立 方体抗压强度标准试件。

1.3 再生混凝土表观密度试验

通过试验测得采用建筑垃圾为骨料的再生混凝 土表观密度,如表4所示。

从表4可知本文所提出的再生混凝土密度均小 于普通混凝土密度(2500 kg/m³),表明该新型再生 混凝土具有轻质的特点。

1.4 再生混凝土立方体抗压强度试验

立方体抗压强度属于再生混凝土基本的力学性 能指标,目前关于再生混凝土抗压强度国内外试验

结果不尽相同。Ridzuan^[18]通过试验得出再生混凝 土的立方体抗压强度要高于普通混凝土,肖建庄 等^[19]则认为普通混凝土的立方体抗压强度要高于再 生混凝土。目前关于掺有一定比例粉煤灰、聚丙烯 纤维和附加水的再生混凝土研究较少,故本文对于 以建筑垃圾为骨料的新型再生混凝土的研究具有应 用意义。

1.4.1 再生混凝土立方体抗压强度试验结果及现象

A,B,C三组再生混凝土立方体抗压强度试验 结果如表5所示。在整个试验过程中发现再生混凝 土试件和普通混凝土试件的破坏形态相似,在竖向 荷载作用下,再生混凝土试件呈现水平伸长和竖向 压缩的变形状态,而且随着荷载的逐渐增大,试件侧

Tab. 4 Apparent d	ensity of recycled concrete
组号	密度/(kg·m ⁻³)
A1	2237
A2	2236
A3	2227
A4	2240
B1	2284
B2	2114
В3	2204
B4	2207
C1	2205
C2	2191
C3	2163
C4	2188

表4 再生混凝土表观密度

表5 再生混凝土立方体抗压强度试验结果

Tab. 5 Cube compressive strength test results of recycled

concrete

concrete	
组号	应力/MPa
A1	31.2
A2	33.4
A3	31.0
A4	33.9
B1	25.2
B2	30.8
В3	29.8
B4	31.4
C1	26.4
C2	31.4
C3	23.9
C4	27.7

面的中部首先出现竖向裂缝,随后裂缝延伸至角部, 形成八字形裂缝,而后混凝土立方体试块边缘逐步 压碎剥落,最终形成正倒相连的四角锥形的破坏形 态,如图1所示。

1.4.2 试验结果分析

从表5可知,A组(水胶比为0.5)再生混凝立方 体抗压强度最高,且均高于普通混凝土(30 MPa), 其中A4组的再生混凝土立方体抗压强度比普通混 凝土立方体抗压强度提高了13%。在试件水胶比 为0.5的情况下,再生混凝土的抗压强度随着聚丙 烯纤维的加入而提高,这主要是因为:(1)聚丙烯纤 维可以明显提高混凝土的抗塑性收缩能力,混凝土 浇筑完成后,裂缝产生的主要原因是材料内部水分 蒸发不一致,造成体积的不均匀收缩,浆体收缩所产 生的拉应力可导致混凝土开裂,而聚丙烯纤维可以 抵消部分应力,从而抑制裂缝的产生和发展。(2)聚 丙烯纤维可以有效地降低裂纹尖端的应力集中,抑 制裂缝的发展。当裂缝形成后,会在尖端处产生应 力集中,因此裂缝会继续扩展,当尖端发展到与聚丙 烯纤维相交时,聚丙烯纤维可以抵消部分应力,因为 在混凝土中聚丙烯纤维呈三维状态分布,所以可有 效地防止裂缝发展成贯穿裂缝。因此聚丙烯纤维可 以提高再生混凝土立方体的抗压强度。再生混凝土 加入粉煤灰后其立方体抗压强度虽然有所降低,但 是粉煤灰具有环保、经济、可再生的特征,而且其抗 压强度也高于普通混凝土立方体抗压强度(30 MPa),所以适当增加粉煤灰在未来的研究中可以作 为一个重要的参考。综上分析,再生混凝土立方体 抗压强度比普通混凝土提高的原因主要可能为:(1) 加入聚丙烯纤维提高再生混凝土立方体抗压强度; (2)再生细骨料和再生粗骨料的吸水率较大,混凝土 的拌和中储水与吸水作用明显;(3)再生细骨料和再 生粗骨料表面粗糙,故其与砂浆的摩擦系数大,使得

(a) 未加聚丙烯纤维 (a) No polypropylene fibers

(b) 加入聚丙烯纤维 (b) Adding polypropylene fibers 图1 再生混凝上立方体抗压强度 Fig. 1 Cube compressive strength of recycled concrete

(c) 受压破坏后试件 (c) Specimen after compression failure

在试验时界面的摩擦力增大。通过对比各组试验结 果发现A4组最优。

采用建筑垃圾为骨料的再生混凝土 2.2 地梁制作 剪力墙拟静力试验

2.1 墙体设计

本文采用A4组再生混凝土配合比进行再生混 凝土墙体的设计和制作,配合比如表6所示。参考 试验加载条件设计墙体长 1.5 m, 高 1.45 m, 厚 150 mm,在墙体两侧设置暗柱以增强整体性,其中暗柱 截面长170 mm,宽150 mm,再生混凝土剪力墙墙体 设计及制作流程如图2所示。

采用插入式装配方法连接墙体和地梁。在地梁 顶部设计凹槽,然后将墙体插入到凹槽中,并在缝隙 中灌入砂浆,使地梁和墙体构成一个整体,这样可以 有效地限制墙体在外荷载作用下发生倾覆和滑移, 地梁设计图如图3所示。

表6 再生混凝土剪力墙配合比(单位:kg/m³)

Tab. 6 Match ratio of recycled concrete shear wall (Unit: kg/m³)

再生混凝土剪力增

图2 墙体设计及制作流程图 Fig. 2 Wall design and making flow chart

2.3 试验装置和加载制度

2.3.1 试验装置

试验装置如图4(a)所示。在竖向作动器和水 平作动器上布置力传感器,在墙体的侧面沿高度布 置5个位移传感器,如图4(b)所示。试验现场照片 如图4(c)所示。

2.3.2 加载制度

首先通过竖向作动器在分配梁顶面中心处施 加竖向荷载80 kN,加载过程中保持恒定。试验开 始前,对墙体进行竖向预加载,预加载值为实际试 验竖向荷载的30%。预加载过程中检查传感器是 否正常,并保证墙体受力稳定和均匀。确保传感器 等正常工作后,在水平方向施加低周往复荷载,且 水平荷载的施加从0开始,每级增加20kN,直到墙 体开裂。每到峰值处持时90s,以便观测墙体的裂 缝状况和记录数据。当墙体达到屈服强度并开裂 后,改用以位移为控制值的加载方式,其加载值取 墙体开裂宽度的2倍,并逐渐增大,每周期位移值 循环2次,直至水平荷载下降到极限荷载的85%, 试验停止。

2

2.4 再生混凝土剪力墙抗震性能试验结果及分析

2.4.1 试验现象及原因分析

试验前期,墙体未有明显变化。当水平荷载达 到140 kN时,墙体的左下角和右下角出现45°交叉 斜裂缝,随着荷载的继续增大,墙面的裂缝逐渐增 多。当水平荷载达到180 kN时,墙体的左上角至右 下角和右上角至左下角出现两条贯穿墙体的斜裂 缝,呈现X形。当水平荷载增加至210 kN时墙体从 底部被剪断,整体结构破坏,如图5所示。

墙体破坏主要是因为墙体受到水平剪切荷载的 作用,随着剪切力的不断增大,墙体进入弹塑性状态,墙体表面出现微小的裂缝。此时水平剪切荷载 继续增大,墙体裂缝不断增多、扩展,且主要以斜裂 缝为主,墙体进入塑性状态。最后,在力的作用下墙 身钢筋网片被拉断,墙体两端暗柱钢筋屈服,墙体 破坏。

2.4.2 滞回曲线

从图6中可以看出试验前期水平方向位移较

小,荷载位移呈直线分布,墙体表面开裂前处于弹性 工作状态。随着水平荷载的继续增大,墙体逐渐开 裂,当水平荷载达到140 kN时,墙体出现斜裂缝,此 时墙体进入弹塑性状态,当水平荷载继续增大,裂缝 逐渐变宽、增多、延伸,滞回曲线所围面积也逐渐增 大,且曲线呈梭形。随着水平荷载的进一步增大,墙 体进入塑性阶段,墙面出现X形裂缝,滞回曲线所围 成的面积继续增加,表明耗能能力增强,且滞回曲线 逐渐由梭形变为弓形。

2.4.3 骨架曲线和刚度退化曲线

从图7墙体的骨架曲线中可以看出,再生混凝 土剪力墙体在试验的整个阶段,骨架曲线的斜率呈 现由大到小的变化趋势,试验刚开始时墙体的骨架 曲线斜率最大,表明再生混凝土剪力墙刚度大,此时 墙体处于弹性阶段。随着水平荷载的逐渐增大,墙 体出现微小裂缝,骨架曲线的斜率开始逐渐减小,此 时墙体处于弹塑性阶段。继续增加水平荷载,发现 墙体的骨架曲线斜率持续下降,表明墙体的承载能

(a) 墙体裂缝 (a) Cracks in the wall

(b) 墙体破坏
 (b) Damaged wall
 图 5 墙体试验现象
 Fig. 5 Wall test phenomenon

力逐渐降低。从图8墙体刚度退化曲线可以看出随 着位移进一步增大,墙体刚度逐渐减小,初始阶段刚 度退化明显,退化速度较快;随着位移的增大,墙体 刚度退化速度逐渐降低,且当墙体处于极限荷载时, 墙体刚度最小,并处于稳定状态。

3 基于再生混凝土的新型装配式结构 地震动台试验

3.1 结构概况

为了研究低成本抗震节能结构体系,基于再生 混凝土力学性能试验和再生混凝土剪力墙拟静力试 验,明确了试验材料的力学性能、墙体的抗震性能和 承载力。提出一种基于再生混凝土的新型插入式装 配结构体系,旨在提供一种工厂化生产,低成本,安 装简单的新型装配式结构,并提出一种造价低廉适 用于该结构的复合滚动隔震装置。

3.2 振动台试验方案

3.2.1 新型装配式结构模型尺寸

受振动台尺寸的限制,将原型结构设计成1:3 缩尺模型,如图9所示。模型尺寸长×宽×高=2.6 m×1.6 m×1.5 m。根据实际尺寸计算模型结构质 量为4.3 t(包括底座重量),屋顶配重1.2 t。最终确 定的相似比关系如表7所示。

3.2.2 新型装配式结构模型砌筑

为了响应国家节能减排,建设节约型社会的号 召,该新型装配式结构模型的材料采用以建筑垃圾 为骨料的再生混凝土,其具体配合比如表6所示。 模型砌筑过程中首先浇筑混凝土地梁,而后绑扎带 有凹槽的异形柱钢筋,并在地梁上支模,浇筑异形 柱,同时砌筑墙体。待墙体和异形柱等养护完毕,将 墙体插入异形柱凹槽,并在异形柱和墙体缝隙中灌 注砂浆,实物模型砌筑过程如图10所示。

3.2.3 复合滚动隔震装置设计

1)滚动隔震装置模型力学性能分析
 滚动隔震装置中滚球在凹槽的滚动过程中摩擦

Fig. 9 Test model of new fabricated construction

表7 模型结构与原型结构的相似关系

	长度	弹性模量	质量	频率	刚度	阻尼
	S_L	S_E	$S_m = S_\rho S_L^3 = S_E S_L^2$	$S_f = (S_K S_m^{-1})^{\frac{1}{2}} = S_L^{-\frac{1}{2}}$	$S_K = S_E S_L$	$S_{c} = S_{m}S_{t}^{-1} = S_{E}S_{L}^{\frac{3}{2}}$
相似关系	0.333	1	0.111	1.732	0.333	0.192

注:S_L为几何相似比;S_E为弹性模量相似比;S_m为质量相似比;S_f为频率相似比;S_K为刚度相似比;S_c为阻尼相似比;S_p为密度相 似比;S_f为时间相似比

图 10 砌筑过程 Fig. 10 Laying process

力和水平刚度非常小,所以有效地阻止了绝大部分 水平地震力向上部结构的传递,而且凹槽可以有效 地限制振动过程中底板所产生的滑动位移。将隔震 装置上部结构假定为刚体运动,质量为*M*,仅考虑 单向的自由振动,其整体简图如11所示。

只取一个钢球进行滚动隔震装置力学分析,其

图 11 滚动隔震体系 Fig. 11 Rolling isolation system

质量为m。其运动与几何关系如图12所示。

图 12 滚动隔震装置的运动与几何关系

Fig. 12 Relationship between motion and geometry of rolling isolation device

可以得到动力方程为

$$M [\ddot{x}_{g}(t) + \ddot{x}_{0}(t)] + c_{0}\dot{x}_{0}(t) +$$

$$k_0 x_0(t) + F_w = 0 \tag{1}$$

式中 $\ddot{x}_{s}(t)$ 为地震波加速度, $\ddot{x}_{0}(t)$ 为上部结构相 对于地面的加速度, c_{0} 为隔震层阻尼, k_{0} 为隔震层刚 度, F_{w} 为隔震层所受的水平力。

由基础的运动和几何关系知

$$\theta \approx \frac{\psi}{r}, \ \psi \approx x_0(t), \ \phi = \theta \frac{r}{R} \approx \frac{x_0(t)}{R} \quad (2)$$

底板的竖向位移为

$$y_0(t) = 2(R-r)(1-\cos\phi)$$
 (3)

结合上面两式,得到竖向加速度为

$$\ddot{y}_{0}(t) = 2(R-r) \left\{ \frac{\ddot{x}_{0}(t)}{R} \sin \frac{x_{0}(t)}{R} + \left[\frac{\dot{x}_{0}(t)}{R} \right]^{2} \cos \frac{x_{0}(t)}{R} \right\}$$
(4)

图 13 底板受力分析 Fig. 13 Force analysis of floor

由图 13 知底板所受的水平合力为

$$F_{\rm H} = F_N \sin \phi + F_\mu \cos \phi$$
 (5)

底板所受的竖向合力为:

$$F_{v} = F_{N} \cos \phi - F_{\mu} \sin \phi = M \left[g + \ddot{y}_{0}(t) \right] \quad (6)$$

$$F_{\mu} = F_{N} \frac{o}{r} \operatorname{sgn}\left(\dot{x}_{0}(t)\right) \tag{7}$$

式中 ∂为滚动摩阻系数。

所以

$$F_{N} = \frac{M\left[g + \ddot{y}_{0}(t)\right]}{\cos\phi - \frac{\delta}{2}\operatorname{sgn}\left(\dot{x}_{0}(t)\right)\sin\phi} \tag{8}$$

$$F_{\rm H} = M \left[g + \ddot{y}_0(t) \right] \frac{\sin \phi + \frac{\delta}{r} \operatorname{sgn}\left(\dot{x}_0(t) \right) \cos \phi}{\cos \phi - \frac{\delta}{r} \operatorname{sgn}\left(\dot{x}_0(t) \right) \sin \phi}$$
(9)

将式(2)代入式(9)得

$$F_{\rm H} = M \left[g + \ddot{y}_0(t) \right] \cdot \frac{\sin \frac{x_0(t)}{R} + \frac{\delta}{r} \operatorname{sgn}\left(\dot{x}_0(t) \right) \cos \frac{x_0(t)}{R}}{\cos \frac{x_0(t)}{R} - \frac{\delta}{r} \operatorname{sgn}\left(\dot{x}_0(t) \right) \sin \frac{x_0(t)}{R}} \quad (10)$$

2)复合滚动隔震装置的研制

地震作用下,滚动隔震装置依靠滚球在凹槽内 滚动来消耗地震能量,并且在上部结构的重力作用 下自身复位。虽然有很好的隔震效果,但由于没有 限制滚球滚动量的措施,滚球仍有可能从凹槽中滚 出,导致建筑物发生倾覆,失去隔震意义。

基于滚动隔震装置的优缺点,结合橡胶自身特性,本文提出了一种新型的复合滚动隔震装置,如图 14所示,该装置由5个废旧橡胶柱体和4个滚动隔 震支座并联而成,其中滚动隔震支座由向上和向下 开口的曲率相同的凹槽所组成,并在凹槽内放置钢 球,该凹槽和钢球的直径可根据上部结构质量和隔 震周期的具体情况来确定;在滚动隔震支座顶部和 底部焊接上下垫板,其中钢球采用轴承钢GCr15,上 下凹槽采用低合金结构钢Q345B,上下垫板采用铸 钢ZG270-500;同时在4个滚动隔震支座的周围布 置5个具有一定剪切刚度的废旧橡胶柱体,限制隔 震层位移,以防止钢球从凹槽中滚落。隔震装置如 图14所示,隔震装置布置如图15所示。

Fig. 14 Composite rolling isolation device

图 15 隔震装置布置图 Fig. 15 Arrangement diagram of isolation device

3)新型隔震装置的优点

(1)橡胶柱起到限位、消能、复位的作用,造价低廉。

(2)橡胶柱增大隔震层的有效刚度和阻尼,对于 减小地震对结构的破坏起到很大的作用。

(3)新型隔震装置结构简单,便于取材,安装施 工简单,具有瞬时复位功能,其既能支撑上部结构, 又能隔离地震向上部结构的输入。

(4)与单一滚动隔震支座相比,该新型复合滚动 隔震装置具有更好的竖向承载能力和恢复力。

3.2.4 测点布置

试验在大连民族大学结构实验室的3.00 m× 3.00 m振动台上完成。为了测量房屋关键部位的加 速度和位移,在模型上分别布置了若干加速度计和 位移计,其测点布置如图16所示。

(a) 传感器布置示意图 (a) Diagram of sensor layout

(b) 传感器布置照片
(b) Photo of sensor arrangement
注: 凶表示位移传感器; ⊗表示水平加速度传感器
图 16 传感器布置
Fig. 16 Sensor arrangement

3.2.5 试验工况

为了考察结构在不同地震波、不同地震等级作 用下的动态特性和响应规律,基于振动台的限制选 择如下4种位移波:Jinmen波、EL-Centro波、Taft波 和Pasadena波,进行了16个试验工况。试验模型的 短边方向为振动台的振动方向。进行名义加速度峰 值分别为0.1g,0.2g,0.3g和0.4g的加振试验,根据 相似比对4种地震波按照设计峰值加速度进行比例 缩放,持续时间与原波相同,其中Jinmen波和EL-Centro波的位移时程曲线如图17-18所示。

Fig. 18 EL-Centro wave time history curve

3.3 试验结果及分析

3.3.1 试验现象

地震波输入后,隔震层出现明显的位移,且随着 地震波加速度峰值的增加,隔震层位移也逐渐增大。 试验过程中隔震层位移呈现平动反应。当台面输入 地震波加速度峰值达到0.2g时,结构未出现裂缝, 处于弹性工作状态。当台面输入地震波加速度峰值 达到0.3g时,结构在洞口处、墙柱连接处开始出现 微裂缝。当台面地震波加速度峰值达到0.4g时,结 构在洞口处、墙柱连接处产生裂缝,但未发现结构出 现较大的损坏与倒塌,其中洞口处裂缝呈现X形分 布,墙柱连接处几乎形成贯通的裂缝。0.4g地震波 输入后激振方向结构裂缝如图19所示。

(a) 门左上角(a) Upper left corner of the door

(b) 门左下角 (b) Bottom left corner of the door

(c) 左侧柱底部
 (d) 左侧柱顶部
 (c) Bottom of left column
 (d) Top of left column
 图 19 结构裂缝
 Fig. 19 Cracks of structure

3.3.2 模型加速度反应

地震波加速度为0.1g,0.2g,0.3g和0.4g时,结构沿高度方向加速度放大系数如图20所示。

从图 20 中可以看出,随着台面地震加速度的不断增大,其上部结构的加速度也逐渐增大。就不同地震动输入来看,在卓越频率相对较高的 EL-Centro 波、Jinmen 波和 Taft 波的作用下,结构的放大系数明显小于卓越频率相对较低的 Pasadena 波,这说

明该隔震装置的隔震效果与输入地震波的频谱特性 有关,设计时,需要选择适当的场地。当输入地震波 的加速度越低,结构的放大系数越小,隔震效果越 好,表明该隔震装置适合于震级较小的地震。 3.3.3 模型位移反应

地震波加速度为0.1g,0.2g,0.3g和0.4g时,结构沿高度方向位移峰值如图21所示。

从图 21 中可以看出,随着台面地震位移的不断 增大,结构的位移也逐渐增大。在不同地震动输入 的情况下,隔震后结构沿高度方向上的振动趋于整 体平动,表明该装置对于结构隔震具有一定的效果。

4 结 论

(1)采用建筑垃圾为骨料的再生混凝土表观密 度具有轻质的特征,掺入聚丙烯纤维后再生混泥土 的抗压性能有所提高,且破坏时碎片剥落较少,具有 较强的整体性。

(2)采用插入式连接的再生混凝土剪力墙其抗 震性能与普通剪力墙类似,弹性阶段位移和荷载呈 近似直线分布状态,弹塑性阶段位移增速明显高于 弹性阶段,塑性阶段墙体产生较大位移,随即倒塌, 且墙体滞回曲线饱满呈现梭形和弓形,具有一定的 耗能能力。

(3)该新型装配式结构洞口处和墙柱连接处为 薄弱部位,在地震作用下洞口处裂缝呈现X形分布, 墙柱连接处几乎形成贯通的裂缝,建议对结构的洞 口进行加固改造,同时对墙柱连接处加强拉结。在 不同地震动输入的情况下,隔震后结构沿高度方向 上的振动趋于整体平动,表明该装置对于结构隔离 地震作用具有一定的效果,但该隔震装置的隔震效 果与输入地震波的频谱特性密切相关,设计时,需要 选择适当的场地。

参考文献:

- Goggins J M, Broderick B M, Elghazouli A Y, et al. Experimental cyclic response of cold-formed hollow steel bracing members[J]. Engineering Structures, 2005, 27(7):977-989.
- [2] Landolfo R, Fiorino L, Corte G D, et al. Seismic behavior of sheathed cold-formed structures: Numerical study
 [J]. Journal of Structural Engineering, 2006, 132(4): 558-569.
- [3] Pourabdollah O, Farahbod F, Rofooei F R, et al. The seismic performance of K-braced cold-formed steel shear panels with improved connections [J]. Journal of Constructional Steel Research, 2017, 135:56-68.
- [4] Hu Yi, Zhao Junhai, Zhang Dongfang, et al. Cyclic tests of fully prefabricated concrete-filled double-skin steel tube/moment-resisting frames with beam-only-connected steel plate shear walls [J]. Thin-Walled Structures, 2019, 15: 24-33.
- [5] Henry R S, Aaleti S, Sritharan S, et al. Concept and finite element modeling of new steel shear connectors for

self centering wall systems [J]. Journal of Engineering Mechanics, 2010, 136 (2):220-229.

- [6] Marriott D J, Pampanin S, Bull D, et al. Dynamic testing of precast post-tensioned rocking wall systems with alternative dissipating solutions[J]. Bulletin of the New Zealand Society for Earthquake Engineering, 2008, 41 (2):90-103.
- [7] 钱稼茹,宋晓璐,冯葆纯,等.喷涂混凝土夹心剪力墙抗 震性能试验研究及有限元分析[J].建筑结构学报, 2013,34(10):12-23.
 QIAN Jiaru, Song Xiaolu, FENG Baochun, et al. Experimental study and finite element analysis of seismic behavior of sprayed concrete sandwich shear walls [J]. Journal of Building Structures, 2013, 34(10), 12-23.
- [8] 贾穗子,曹万林,王如伟,等.适于低层农房的装配式 轻钢边框-薄墙板组合结构抗震性能试验研究[J].东 南大学学报(自然科学版),2018,48(2):323-329. JIA Suizi, CAO Wanlin, WANG Ruwei, et al. Experimental study on seismic performance of fabricated composite structure of thin slab with lightweight steel frame for low-rise housing[J]. Journal of Southeast University (Natural Science Edition), 2018,48(2):323-329.
- [9] 王 维,李爱群,贾 洪,等.预制混凝土剪力墙隔震结构振动台试验研究[J].建筑结构学报,2015,36(6):35-44.
 WANG Wei, LI Aiqun, JIA Hong, et al. Shaking table test of precast concrete shear wall isolation structure [J]. Journal of Building Structures, 2015, 36(6): 35-44.
- [10] 袁 涌,朱 昆,熊世树,等.高阻尼橡胶隔震支座的力
 学性能及隔震效果研究[J].工程抗震与加固改造,
 2008,30(3):15-20.

YUAN Yong, ZHU Kun, XIONG Shishu, et al. Experimental study characteristic and isolator effect of high-damping rubber bearing [J]. Earthquake Resistant Engineering and Retrofitting, 2008, 30(3):15-20.

[11] 吴应雄,颜桂云,石文龙,等.长周期地震动作用下高层 隔震结构减震性能试验研究[J].振动工程学报,2017, 30(5):806-816.

Wu Yingxiong, Yan Guiyun, Shi Wenlong, et al. Experimental study on the seismic-reduction performance of high-rise isolated structure under long-period ground motions[J].Journal of Vibration Engineering, 2017, 30 (5):806-816.

[12] 颜桂云,肖晓菲,吴应雄,等.近断层地震动作用下大底盘单塔楼隔震结构振动台试验研究[J].振动工程学报,2018,31(5):800-811.
 Yan Guiyun, XIAO Xiaofei, Wu Yingxiong, et al. Shak-

ing table test of isolated single-tower structures with a large chassis under near-fault ground motions[J].Journal of Vibration Engineering, 2018, 31(5):800-811.

[13] 潘钦锋,颜桂云,吴应雄,等.近断层脉冲型地震动作 用下高层建筑组合隔震的减震性能研究[J].振动工程 学报,2019,32(5):845-855.

Pan Qinfeng, YAN Guiyun, Wu Yingxiong, et al. Seismic absorption performance of composite isolation for high-rise buildings subjected to near-fault pulse ground motions[J]. Journal of Vibration Engineering, 2019, 32 (5):845-855.

 [14] 刘彦辉,刘小换,谭 平,等. 层间组合隔震结构随机动力可靠度分析[J]. 振动工程学报,2019,32(2): 324-330.

Liu Yanhui, Liu Xiaohuan, Tan Ping, et al. Dynamic reliability for inter-story hybrid isolation structure [J]. Journal of Vibration Engineering, 2019,32(2):324-330.

[15] 吴倩芸,何文福,刘文光,等.铅芯橡胶隔震支座大变形 硬化模型及隔震结构弹塑性分析研究[J].振动与冲 击,2017,36(15):90-97.
WU Qianyun, HE Wenfu,LIU Wenguang, et al. Large deformation hardening model of lead rubber bearings and elastic-plastic analysis for a structure with seismic

(15):90-97.

isolation[J].Journal of Vibration and Shock, 2017, 36

[16] TANG Baizan, CHEN Su, LI Xiaojun, et al. Seismic

performance of RC frames with EPSC latticed concrete infill walls[J]. Engineering Structures, 2019, 197: 141-152.

- [17] 中国建筑科学研究院有限公司.GB 50081-2019, 混凝 土物理力学性能试验方法标准[S].北京:中国建筑工 业出版社,2019.
 China Academy of Building Research. GB 50081-2019, Standard for test methods of concrete physical and mechanical propeties[S]. Beijing: China Architec-
- [18] RIDZUAN A R M. The influence of recycled aggregate concrete on the early comprehensive strength and drying shrinkage of concrete[C].Proceedings of the International Conference on Structural Engineering, Mechanics and Computation. Cape Town, South Africa, 2001: 1415-1421.

ture Publishing & Media Co., Ltd., 2019.

[19] 肖建庄,李佳彬,孙振平,等.再生混凝上的抗压强度 研究[J].同济大学学报(自然科学版),2004,32(12): 1558-1561.

XIAO Jianzhuang, LI Jiabin, SUN Zhenping, et al. Study on compressive strength of recycled aggregates concrete [J]. Journal of Tongji University (Natural Science), 2004, 32 (12):1558-1561.

Experimental study on seismic performance of a fabricated structure based on recycled concrete

LI Xiang^{1,2}, SUN Jian-gang², ZHANG Shu-jin¹, WANG Zun-ce¹, XU Lei², CUI Li-fu², SHA Dong³

(1. College of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, China;

2. College of Civil Engineering, Dalian Minzu University, Dalian 116650, China;

3. Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116023, China)

Abstract: In order to study the low cost seismic and energy saving structure system, the mechanical properties of recycled concrete with construction waste as aggregate were tested. A pseudo-static test was carried out on the recycled concrete shear wall, the bearing capacity, failure pattern and hysteresis characteristics of the recycled concrete shear wall with construction waste as aggregate were analyzed. A type of isolation device and fabricated construction was presented, the seismic performance of the isolation structure was analyzed under earthquake action and the effectiveness of the isolation device was tested by simulating the ground shaking table test. The results show that the mechanical properties of recycled concrete increase with the addition of polypropylene fiber. The recycled concrete shear wall has higher seismic performance and bearing capacity. The weakness of fabricated construction is at the hole and the joints of wall and column. Under the action of earthquake, the cracks that are at the hole present the X type distribution, the joints of the wall and column almost form penetrating cracks. Under the action of different seismic waves, the vibration of the isolation structure along the direction of height tends to be overall translation, which indicates that the isolation device has a certain effect on the seismic isolation of the structure, but the isolation effect of the isolation device is related to the frequency spectrum characteristics of the input seismic wave. When designing, the right site needs to be chosen.

Key words: isolation structure; construction waste; shaking table test; new fabricated construction; pseudo-static test

作者简介: 李 想(1989-), 男, 博士研究生, 讲师。电话:(0411)87557345; E-mail: idealityme@163.com 通讯简介: 孙建刚(1959-), 男, 博士, 教授。电话:(0411)87557350; E-mail:277602125@qq.com