不同风倾角下典型等边角钢静风力风洞试验研究

张庆华1,马文勇2,杨杰3,张彦4,周帅伟1

(1.华北水利水电大学土木与交通学院,河南郑州450045;2.石家庄铁道大学风工程研究中心,河北石家庄 050043;3.华北水利水电大学机械学院,河南郑州450045;4.中国河南国际合作集团有限公司,河南郑州450004)

摘要:角钢作为格构式结构的基本组成部分,其风力系数的精度将直接影响结构整体风力系数取值的准确性。通 过刚性模型高频动态天平测力风洞试验,测量了随倾角和风向角变化的典型三维等边角钢的静风力。研究表明:倾 斜安装角钢的阻力系数、升力系数与垂直安装相比,随风向变化趋势类似,但在某些风向角下数值明显降低;不同风 倾角(β=30°~50°)时风力系数(C_D,C_L,C_M)随风向变化能够较好地吻合,即风倾角的变化对风力系数值影响不明 显。角钢垂直安装时,静力折算高度随风向在(0.4~0.6)倍总高附近变化,角钢对于来流前倾安装后,静力折算高度 随风向的波动增大明显;此外,根据试验结果分别给出了角钢垂直安装和倾斜安装情况下角度风荷载系数、升力系 数的建议公式,并对相关参数进行了拟合。

关键词:风洞试验;等边角钢;高频动态测力天平;风力系数;角度风系数 中图分类号:TU317⁺.1;TU392.1 文献标志码:A 文章编号:1004-4523(2022)02-0277-07 DOI:10.16385/j.cnki.issn.1004-4523.2022.02.003

引 言

中国《建筑结构荷载规范》(GB 50009-2012)^[1] 中,格构式桁架结构体型系数的确定方法通常有两 种:①整体法。对于形状规则的空间结构(如矩形、三 角形截面等),把结构作为一个整体,直接给出总体型 系数。该方法给出的体型系数考虑了构件间的相互 影响,使用方便快捷。②组合法。基于单根角钢阻力 系数,组合得到格构式结构整体体型系数,构件间的 相互影响通过荷载降低系数(n)考虑。组合法多用于 多榀平行桁架和外形复杂杆塔体形系数的确定。然 而,中国荷载规范GB 50009-2012中,单根角钢风力 系数取值简单(+1.30),并未考虑风向等因素的影响, 相比现有国内外规范和文献研究结果在多数情况下 相对偏小,这将造成组合法得到的结构整体体型系数 相对较小^[2]。可见,作为格构式结构的基本组成部分, 获得准确可靠的单根角钢风力系数值是采用组合法 得到合理的整体风力系数的基础,将直接影响桁架整 体风力系数取值的准确性。

单根角钢静风力系数的研究开展较早,Wardlaw^[3],Slater^[4],Sachs^[5],Modi等^[6]分别给出了单角 钢静风力系数随来流风向变化情况,其研究结果被 广泛的应用于国外相关荷载规范中(ISO 4354: 2009^[7], AIJ^[8], ASCE No. 74^[9], AS/NZS1170.2: 2011^[10]等)。鉴于早期研究仅关注了风向的影响, Prud'homme S等^[11]通过试验详细探讨了雷诺数、紊 流度、阻塞效应等参数对钢风力系数的影响。上述 研究测力试验中,角钢模型均为二维模型(角钢的倾 斜角为0°),因而理论模型当中的气动力也是二维 的。现实中,角钢在空间的分布是任意的,即风倾角 不为零,角钢与来流之间的相对位置是三维空间关 系,二维角钢模型获得的气动力并不能准确反映三 维角钢的气动力特性。

针对以上问题,本文完成了三维等边角钢模型 的刚性模型测力风洞试验,系统地测量了在不同风 向角下倾斜角钢模型的风力系数,构建了考虑风倾 角影响的单角钢角度风系数公式,对相关参数进行 了拟合,计算了角钢静风力作用折算高度。所得结 果不仅可为相关荷载规范的完善提供试验依据,也 可为工程中L型结构抗风设计参考。

1 风洞试验概况

1.1 试验设备及数据处理

本次试验在石家庄铁道大学风工程研究中心大

收稿日期: 2020-06-27; 修订日期: 2020-12-18

基金项目:NSFC-河南人才培养联合基金资助项目(U1504502);河南省科技攻关项目(182102310768);河南省高等学校 重点科研项目(22A410003)。

气边界层风洞的低速试验段内完成,该试验段模型 区宽4.4 m,高3.0 m,长24.0 m,最大风速可达 30.0 m/s,速度场不均匀性、湍流度不超过0.4%,流 场品质优秀。

试验主要测试设备包括:Delta六分量高频动态 测力天平、Cobra三维脉动风速测量仪、数据采集和 分析系统等。本文试验天平采样频率取 300 Hz,采 样长度 45000点。为保证数据质量提高系统有效频 率宽度,采用低通滤波器对信号进行了数字滤波。

1.2 试验风场及试验模型

要保证试验模型既具有足够的刚度又使质量尽量小,选用角铝(密度:2.7×10³ kg/m³)模拟实际角钢(密度:7.9×10³ kg/m³)。实际中,等边角钢与角铝外形最大的不同在于边端形状,两者存在较大差异,Prud'homme S等^[11]研究表明,不同的边端形状对风力系数的影响基本可以忽略,只在特定风向角会产生不超过9%的误差。因而,选用等边角铝能够满足本次试验要求。综合考虑各项试验条件,试验模型采用常见的等边角铝L50×50(mm)(壁厚1.8 mm)加工制作。模型在风洞中的安装简图如图1所示。

文献[11-14]研究表明,风场(紊流度)对尖角构 件风力系数的影响可以忽略,因而本次试验直接在 均匀流场中进行。为了消除端部效应以及下部天 平、模型连接件等对试验结果的影响,模型两端设计 安装了圆形端板,其中,上端板外径 Φ =300 mm;下 端板外径 Φ =500 mm,根据文献[15]研究可知,当 $\Phi>4L(L:模型断面对角线长度),能够较好地抑制$ 端部效应。

上导流板由定制的导流板支架支撑,为了避免 与试验工件发生碰撞,在导流板中部采用有机玻璃 制作了流线型半圆端盖(图1(a))。导流板支架由 方钢焊接而成,直接固定于转盘上,为了避免模型支 架对风洞试验造成影响,试验时确保支架始终处于 风场来流方向试验工件的后部。为了避免模型与天 平护套发生碰撞,试验时专门设计加工了模型与天 平连接构件。模型、底座与连接件通过螺栓紧固。

考虑到空间桁架斜腹杆与弦杆的倾斜夹角通常 在 30°~60°范围内^[16],本次风洞试验重点研究风倾 角 β =0°,30°~50°(5°间隔)时,角钢的静风力系数变 化情况。试验时,不同倾斜角 β 对应不同的试验模 型,模型固定安装于风洞转盘,通过转动转盘模拟不 同的来流风向。为了与以往研究结果对比,角钢垂 直安装(β =0°)时,根据结构对称性,风向角 α 变化 范围取0°~180°(逆时针方向以5°间隔增加),试验风 向角及坐标系如图1(b)所示。角钢倾斜安装(β =

Fig. 1 Diagram of model installation and test wind directions

30°~50°(5°间隔))时,风向角α在0°~360°变化(逆时针方向10°间隔增加),试验风向角及坐标系如图 1(c)所示。此外,由于试验模型的阻塞率<5%,不 再考虑风洞阻塞修正。

2 角钢风洞试验结果分析

作用于试验模型基底的*X*,*Y*向总的水平风力 和绕*Z*轴总的扭转力矩时程通过试验可以直接获得 (模型坐标系参见图1(b),(c)),均值分别记为: $\bar{F}_{Xm}, \bar{F}_{Ym}, \bar{M}_{Zm}$ 。为了消除模型、天平连接构件对模 型风力的影响,对连接构件进行了单独的测力试验, 其*X*,*Y*和*Z*向风力的均值记为: $\bar{F}_{Xd}, \bar{F}_{Yd}, \bar{M}_{Zd}$ 。定 义作用于模型*X*,*Y*和*Z*向的无量纲平均风力系 数为:

$$C_{F_{X}} = (\bar{F}_{Xm} - \bar{F}_{Xd}) / (0.5\rho U_{m}^{2} S_{m})$$
(1)

$$C_{F_{Y}} = (\bar{F}_{Ym} - \bar{F}_{Yd}) / (0.5\rho U_{m}^{2} S_{m})$$
(2)

$$C_{M_z} = (\bar{M}_{Zm} - \bar{M}_{Zd}) / (0.5 \rho U_m^2 S_m H_m)$$
 (3)

式中 U_m 为试验来流风速(m/s); ρ 为空气密度,取 $\rho = 1.225 \text{ kg/m}^3$; S_m 为角钢单边迎风时的轮廓面积 (m²); H_m 为模型的特征尺寸(m),这里取试验模型 长度为参考值。

将上述体轴风力系数沿风轴坐标系(参见图1 (b),(c))方向投影,即可得到模型受到的阻力 C_D (α)和升力 $C_L(\alpha)$ 系数: $C_{D}(\alpha) = C_{F_{x}}(\alpha) \cdot \cos \alpha + C_{F_{y}}(\alpha) \cdot \sin \alpha \quad (4)$ $C_{L}(\alpha) = -C_{F_{y}}(\alpha) \cdot \sin \alpha + C_{F_{y}}(\alpha) \cdot \cos \alpha \quad (5)$

3 角钢垂直安装($\beta=0^\circ$)静风力系数

3.1 风速对风力系数的影响

为了验证来流风速对风力系数的影响,分别选取 6,8,10,12,14 m/s试验风速,完成了0°风向(图1(b), α =0°)角钢垂直安装(β =0°)的风洞试验,得到了不同 风速下模型的阻力系数 C_{D} ,升力系数 C_{L} 和扭矩系数 C_{M} 值(如表1所示)。可以看到,与文献[11-12]结果一 致,风速变化对本具有尖角的角钢类构件风力系数的 影响可以忽略不计。综合考虑试验条件和试验精度, 后续分析研究都基于10 m/s试验风速。

表 1 不同风速风力系数值 Tab. 1 The wind force coefficients of different wind

velocities			
风速/(m·s ⁻¹)	C_D	C_L	C_M
6	2.005	0.160	0.011
8	2.102	-0.021	0.011
10	2.079	-0.010	0.013
12	2.122	0.038	0.015
14	2.110	0.116	0.017

3.2 与以往研究比较

文献[3-4,11]对垂直安装单根角钢静风力系数 随风向变化情况分别进行过详细的研究和探讨,并 被相关荷载规范^[7-10]采用。图2给出了垂直安装 (β=0°)时本文测力试验得到阻力和升力系数与相

Fig. 2 Comparison of the wind force coefficients between tests and previous results

关文献和规范结果的对比图。可以看到,本文试验 得到的风力系数(*C_p*,*C_L*),除了90°~110°风向时*C_p* 值略大外,其余风向与以往研究都能够很好的吻合。

通过试验结果与以往研究的比较,进一步验证 了本文试验设备、试验装置以及结果的准确性、可靠 性。需要说明的是,图2中部分对比数据来自文 献[11]。

3.3 $\beta = 0^{\circ}$ 时顺风向角度风荷载系数及公式拟合

现行的国内外结构荷载规范^[1,810]中,顺风向风 荷载的计算可以统一写为^[17]:

 $F_D(\alpha) = 0.5 \rho \cdot U^2 \cdot A \cdot C_D(0) \cdot K_{Da}(\alpha)$ (6) 式中 $F_D(\alpha)$ 为作用于结构顺风向的阻力(kN); U 为来流平均风速值(m/s); A 为结构迎风面投影面 积值(m²), $C_D(0)$ 为0°风向时的阻力系数值; K_{Da} 为 顺风向角度风荷载系数:

$$K_{D\alpha}(\alpha) = C_D(\alpha) / C_D(0)$$
 (7)

常见的格构式结构荷载规范(ASCE No. 74^[9], CEI/IEC 60826:2003^[18],BS EN 50341-1:2012^[19]) 中,对常见空间对称(矩形、三角形)桁架结构,角度 风系数取固定值: K_{α} =1+0.2 sin²(2 α)。图3给出 了垂直安装(β =0°)时,单角钢顺风向角度风系数分 布情况,可以看到,上述固定表达式给出的角度风系 数值明显大于试验结果,并不适用于单角钢构件。

参考规范角度风系数表达式,根据单角钢数值 的分布情况,构造函数: $K_{Da} = A_1 + B_1 \sin^2(2a + C_1)$ 来拟合风洞试验得到的角钢构件的角度风系数 曲线,其中, A_1 , B_1 , C_1 为待定参数。考虑到角度风系 数试验值在[0°,90°)和[90°,180°]变化趋势存在较 大的差异,这里在 $\alpha \in [0°,90°)$ 和 $\alpha \in [90°,180°]$ 两段 内分别拟合。通过 Matlab 软件对待定参数进行非 线性拟合,结果为:

$$K_{D\alpha} = \begin{cases} 0.44 + 0.69 \sin^2 (2\alpha + 43.94), \\ 0^{\circ} \leqslant \alpha < 90^{\circ} \\ 0.77 + 0.23 \sin^2 (2\alpha + 25.68), \\ 90^{\circ} \leqslant \alpha \leqslant 180^{\circ} \end{cases}$$
(8)

图 3 中给出了角度风荷载系数拟合曲线与试验 结果对比及两者的误差值(误差(Error)=(试验 值-拟合值)/试验值×100%)。可以看到,除极小 值位置附近误差较大以外,其他风向下试验值与拟 合值吻合较好。

3.4 $\beta = 0^{\circ}$ 升力系数公式拟合

由图2可以看到,在某些风向角下,升力系数值 较大,甚至超过了同风向的阻力系数值,即:横风向 升力对角钢风荷载也会产生较大的影响,其作用不 能被忽略。

构件横风向风荷载(不同于顺风向)作用机理复杂,是来流紊流、特征紊流、漩涡脱落等多种因素共同作用的结果,荷载规范中给出的横风向风荷载计算公式与顺风向(公式(6))差异明显^[1,10]。同时,由于0°风向升力系数 $C_t(0)\approx 0$,本文不再考虑升力角度风系数,将直接对升力系数进行拟合。

根据角钢垂直安装时升力系数的分布情况,构 造函数 $C_{La} = A_2 + B_2 \sin^2(2\alpha + C_2)$ 进行拟合, A_2 , B_2 , C_2 为待定参数。为了保证足够的拟合精度,在 $\alpha \in [0^\circ, 90^\circ)$ 和 $\alpha \in [90^\circ, 180^\circ]$ 两段内分别进行非线 性拟合。结果为:

$$C_{L\alpha} = \begin{cases} 1.08 - 3.68\sin(2\alpha + 7.9), \\ 0^{\circ} \leqslant \alpha < 90^{\circ} \\ 1.18 + 2.08\sin(2\alpha - 26.79), \\ 90^{\circ} \leqslant \alpha \leqslant 180^{\circ} \end{cases}$$
(9)

图4中给出了升力系数拟合曲线与试验结果对 比及两者的误差值(误差(Error)=(试验值-拟合 值)/试验值×100%)。由于升力系数*C*_L在多数风 向角下数值较小,造成拟合结果误差值略大,但在 *C*_L的极值风向附近,能够保证较好的拟合精度。

4 角钢倾斜安装静风力系数

4.1 $\beta = 30^{\circ} \sim 50^{\circ}$ 时风力系数随风向变化

图 5 给出了不同风倾角(β =0°, 30°~50°)角钢模 型顺、横风向和扭转向的平均风力系数(C_D , C_L , C_M) 随来流风向(α , 图 1(c))变化。其中,角钢垂直安装 (β =0°)的风力系数根据本文第 3 节拟合结果,由结 构对称性得到。

图4 横风向升力系数拟合曲线及拟合误差(β=0°)

Fig. 4 The comparison on the lift coefficients of the fitting curve with the test results and fitting errors ($\beta=0^{\circ}$)

 β =30°~50°时,不同风倾角阻力系数*C*_D随风向 (α)变化能够很好的吻合,即:当角钢倾斜安装后, 风倾角的改变对*C*_D值基本无影响。α=180°时,*C*_D 达到极大值,角钢倾斜角不同,*C*_{Dmax}在+2.2附近波 动。与角钢垂直安装(β=0°)相比,阻力系数*C*_D随 风向(α)变化趋势类似,但倾斜安装后,在风向α∈ [45°,100°],α∈[270°,310°]时,*C*_D值明显降低,降 幅最大达到了50%左右。

不同风倾角(β =30°~50°),角钢的升力系数 C_L 随 风向(α)分布形态类似,呈锯齿状波动,且能够较好的 吻合,与垂直安装(β =0°)相比, C_L 峰值明显降低。倾 斜安装角钢 α =160°时, C_L 达极大值,约为+1.5; α = 360°(0°)时,*C*_L达极小值,约为-2.9,与相同风向阻力 系数相比,升力系数值更大。可见:与垂直安装类似, 横风向风荷载对倾斜角钢的影响不能被忽略。

角钢垂直安装(β =0°)时,平均扭矩系数 C_{M} 值较小,接近于0,随风向基本无变化。当角钢倾斜安装后,以 α =180°为对称轴,呈左右对称。 α =0°(360°),180°时, C_{M} 达极值,约为±0.6。

此外,由风向图 1(c)可知,角钢倾斜安装时, $a \in [0^{\circ}, 180^{\circ})$ 时构件相对来流前倾, $\alpha \in [180^{\circ}, 360^{\circ}]$ 时构件后倾,鉴于顺、横风向平均风力系数(C_{D}, C_{L})以 $\alpha = 180^{\circ}$ 为中心,左右两侧对称风向下数值存在较大的差异,可见角钢相对于来流前后倾斜不同对风力系数(C_{D}, C_{L})影响明显。扭转风力系数 C_{M} 以 $\alpha = 180^{\circ}$ 基本呈左右对称,即角钢前后倾斜对 C_{M} 基本无影响。

4.2 倾斜角度风荷载系数

根据 4.1 可知,相同风向角(α ,图1(c))下,风倾 角(β)的变化对 C_p 影响不大,但与垂直安装相比有 较大的波动。为了考虑角度倾斜对角钢风荷载系数 的影响,引入倾斜角度风荷载系数 $K_{D\beta}$ 。参考表达式 (7)定义倾斜角度风荷载系数:

$$K_{D\beta} = C_{D\beta mean}(\alpha) / C_D(\alpha, 0)$$
(10)

式中 $C_{Dgmean}(\alpha)$ 为倾斜安装(β =30°~50°)阻力系数 均值, $C_{D}(\alpha, 0)$ 为垂直安装阻力系数值。采用顺风 向角度风系数 K_{Da} 类似的构造函数在 $\alpha \in [0^{\circ}, 180^{\circ})$ 和 $\alpha \in [180^{\circ}, 360^{\circ}]$ 两段内对 K_{Dg} 进行非线性拟合,图 6给出了倾斜角度风荷载系数拟合结果与拟合误差 图。 K_{Dg} 公式拟合结果为:

$$K_{D\beta} = \begin{cases} 0.69 - 0.28 \sin(2\alpha - 53.17), \\ 0^{\circ} \leqslant \alpha < 180^{\circ} \\ 0.83 - 0.13 \sin(2\alpha - 40.65), \\ 180^{\circ} \leqslant \alpha \leqslant 360^{\circ} \end{cases}$$
(11)

Fig. 6 The comparison on the inclined wind load factors of the fitting curve with the test results and fitting errors

根据第3.3和本节拟合结果,考虑风向角(图1 (b)和(c))的不同,角钢倾斜安装时,顺风向阻力系数*C*_p可按下式计算:

 $C_D(\alpha) = C_D(0) \cdot K_{D\alpha}(\alpha + 45^\circ) \cdot K_{D\beta}(\alpha) \quad (12)$

4.3 倾斜安装角钢升力系数拟合

根据图 5 可知:角钢倾斜安装较垂直安装升力 系数 C_L除少数风向明显降低外,多数情况两者差异 不明显,且多位于0值附近,本文将直接对倾斜安装 升力系数 C_L随风向(α,图1(c))变化情况进行拟合。 升力系数拟合结果为:

$$C_{L\beta}(\alpha) = \begin{cases} -0.28 + 1.67\sin(1.37\alpha - 134.74), \\ 0^{\circ} \leq \alpha \leq 45^{\circ}, 275^{\circ} \leq \alpha \leq 360^{\circ} \\ 3.46 - 7.61\cos(0.36\alpha + 27.03), \\ 45^{\circ} < \alpha < 275^{\circ} \end{cases}$$
(13)

图7给出了拟合结果与试验结果对比图。

Fig. 7 The fitting result of lift coefficients of angle steel under tile angles

5 静风力作用折算高度

通过天平测力试验可以直接得到作用于结构基 底的剪力 F_m(t)和弯矩 M_m(t),公式为:

$$F_{m}(t) = \sum_{i=1}^{N} P_{m}(z_{mi}; t)$$
(14)

$$M_{m}(t) = \sum_{i=1}^{N} P_{m}(z_{mi}; t) z_{mi}$$
(15)

式中 *P_m(z_{mi};t)*为作用在结构高度*z_{mi}*处的风力。基 底剪力*F_m(t)*反映了结构外加风荷载(分布力)合力 的概念,而基底弯矩*M_m(t)*实质上是以高度为加权 系数的外加风荷载的加权和,不仅反映了分布风力 的总量,还蕴含了作用于结构风荷载空间分布的特 性。综合基底剪力、基底弯矩在本质上的异同点,对 两者关系进行深入探讨,可以得到作用于角钢构件 外加风荷载的分布信息。

定义无量纲静力折算高度:

$$H_{\text{mean}} = \frac{1}{H} \cdot \frac{\sum_{i=1}^{N} \bar{P}_{m}(z_{mi}) z_{mi}}{\sum_{i=1}^{N} \bar{P}_{m}(z_{mi})} = \frac{1}{H} \cdot \frac{\bar{M}_{m}(t)}{\bar{F}_{m}(t)} \quad (16)$$

式中 H为模型总高度。考虑到顺、横风向风荷载 对角钢都有较大的影响,取 $\bar{M}_m(t)=\bar{M}_R=$ $\sqrt{(\bar{M}_x^2+\bar{M}_y^2)}, \bar{F}_m(t)=\bar{F}_R=\sqrt{(F_x^2+F_y^2)}, \bar{F}_x, \bar{F}_y,$ \bar{M}_x, \bar{M}_y 分别为天平测力试验得到的X,Y向基底弯 矩和基底剪力的均值。折算高度 H_{mean} 即为结构受 到的沿高度竖向分布的平均风力合力的作用位置。

图 8 分别给出了垂直安装(β =0°)和倾斜安装 (β =30°~50°)时,角钢静力折算高度随风向(α ,图1 (b))变化情况。垂直安装(β =0°),静力折算高度随 风向在(0.4~0.6)H附近上下波动,随风向变化不 大。倾斜安装(β =30°~50°),特别是角钢相对于来 流风向前倾安装时(α =0°~180°,图1(c)),静力折 算高度随风向的波动明显增大,向后倾斜时,静力折 算高度与垂直安装时的折算高度类似,在(0.4~0.6)H 附近上下波动,变化不明显。

Fig. 8 The reduced heights of wind loads on angle steel models

6 结 论

本文通过动态高频天平测力风洞试验,详细研 究了典型等边角钢构件垂直、倾斜安装时三维静风 力特性。结论如下:

(1)给出垂直安装角钢角度风荷载系数、升力系 数建议公式,对相关参数进行了拟合。

(2)倾斜安装时角钢阻力系数 C_D、升力系数 C_L 与垂直安装随风向变化趋势类似,但在某些风向角 下数值明显降低。

(3)不同风倾角(β =30°~50°)风力系数(C_D , C_L , C_M)随风向变化能够很好的吻合,即风倾斜角改 变对风力系数值影响不明显。

(4)根据试验结果,给出了角钢倾斜角度风荷载 系数、升力系数的建议公式,并对相关参数进行了 拟合。

(5)角钢垂直安装时,静力折算高度随风向在 (0.4~0.6)倍总高附近变化。当角钢相对于来流前 倾时,静力折算高度随风向的波动增大明显。

参考文献:

[1] 建筑结构荷载规范:GB 50009-2012[S].北京:中国 建筑工业出版社, 2012.

Load code for the design of building structures: GB 50009-2012 [S]. Beijing: China Architecture & Building Press, 2012.

- [2] 杨风利.角钢输电铁塔横担角度风荷载系数取值研究
 [J].工程力学,2017,34(4):150-159.
 Yang Fengli. Study on skewed wind load factor on cross-arms of angle steel transmission towers under skewed wind [J] Engineering Mechanics, 2017, 34 (4):150-159.
- [3] Wardlaw R. Aerodynamically excited vibration of 3 inch×3 inch aluminium angle in steady flow[R]. National Research Council of Canada, 1967.
- [4] Slater Jonathan Ernest. Aeroelastic instability of a structural angle section [D]. Canada: University of British Columbia, 1969.
- [5] Sachs Peter. Wind Forces in Engineering [M]. 2nd ed. Pergamon Press, 1978.
- [6] Modi V J, Slater J E. Unsteady aerodynamics and vortex induced aeroelastic instability of a structural angle section [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1983, 11(1): 321-334.
- [7] Wind action on structures: ISO 4354: 2009[S]. Switzerland: International Organization for Standardization, 2009.

- [8] Recommendations for loads on building, AIJ [S]. 2004.
- [9] Guidelines for electrical transmission line structural loading, ASCE No. 74[S]. 3rd ed. 2009.
- [10] Structural design actions, part 2: wind loads, AS/ NZS1170.2: 2011 [S]. The Joint Standards Australia/ Standards New Zealand Committee, 2011.
- [11] Prud' homme Simon, Legeron Frederic, Langlois Sébastien. Calculation of wind forces on lattice structures made of round bars by a local approach [J]. Engineering Structures, 2018, 156: 548-555.
- [12] 埃米尔希谬,罗伯特 H 斯坎伦.风对结构的作用—— 风工程导论 [M]. 刘尚培,项海帆,谢霁明,译.上 海:同济大学出版社,1992.

Simiu Emil, Scanlan Robert H. Wind Effects On Structures: An Introduction to Wind Engineering[M]. Translated by Liu Shangpei, Xiang Haifan, Xie Jiming. Shanghai: Tongji University Press, 1992.

- [13] Carril Celio F Jr, Isyumov Nicholas, Brasil Reyolando M L R F. Experimental study of the wind forces on rectangular latticed communication towers with antennas
 [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91(8): 1007-1022.
- [14]张庆华,顾明,黄鹏.格构式塔架风力特性试验研究[J].振动与冲击,2009,28(2):1-4.Zhang Qinghua, Gu Ming, Huang Peng. Experimental

study of wind force on latticed tower [J]. Journal of Vibration and Shock, 2009, 28(2): 1-4.

[15] 郑云飞,刘庆宽,马文勇,等.端板对二维矩形风洞试 验模型气动特性的影响[J].实验流体力学,2017,31 (3):38-45.

Zheng Yunfei, Liu Qingkuan, Ma Wenyong, et al. Effects of end plates on aerodynamic force of rectangular prisms in wind tunnel test [J]. Journal of Experiments in Fluid Mechanics, 2017, 31(3): 38-45.

- [16] 钢结构设计标准:GB 50017—2017 [S].北京:中国建 筑工业出版社, 2017.
 Standard for design of steel structures: GB 50017— 2017 [S]. Beijing: China Architecture & Building Press, 2017.
- [17] Zhou Qi, Zhang Hongjie, Ma Bin, et al. Wind loads on transmission tower bodies under skew winds with both yaw and tilt angles [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 187: 48-60.
- [18] Design criteria of overhead transmission lines, CEI/ IEC 60826: 2003 [S]. International Electrotechnical Commission, 2003.
- [19] Overhead electrical lines exceeding AC 1 kV-Part 1: General requirements—common specifications: BS EN 50341-1: 2012 [S]. European Committee for Electrotechnical Standardization, 2013.

Experimental study of static wind force on typical equal angle steels under skew winds with different inclined angles

ZHANG Qing-hua¹, MA Wen-yong², YANG Jie³, ZHANG Yan⁴, ZHOU Shuai-wei¹

(1.School of Civil Engineering and Communication, North China University of Water Resources and Electric Power,
 Zhengzhou 450045, China; 2.Wind Engineering Research Center, Shijiazhuang Tiedao University, Shijiazhuang 050043, China;
 3.School of Mechanical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China;
 4.China Henan International Cooperation Group Co. Ltd., Zhengzhou 450004, China)

Abstract: As the basic component of lattice structures, the precision of the wind force coefficient of angle steels directly affects the accuracy of the value of the overall wind coefficient of structures. The typical equal angle steels used to form space lattice structures are elected as the research objects. With the help of a special designed test apparatus, static wind forces on a typical equal angle steel under different yawed and inclined angles are thoroughly tested in a wind tunnel by using the high-frequency-force-balance technique. The results show that, firstly, compared with vertical installation, the drag coefficient and lift coefficient of inclined angles steel have similar variation trend with yawed angles. However, these coefficients significantly reduce at some wind direction angles. Secondly, wind force coefficients (C_D , C_L , C_M) show good agreement under different inclined angles (from 30° to 50°). In other words, the changing of inclined angles has little influence on wind forces coefficients. Thirdly, the reduced height of static wind forces on vertical equal angle steel is around ($0.4 \sim 0.6$) total height. However, when the angle steel is leaning forward the oncoming wind, the fluctuation range of reduced height of the static wind forces increases obviously. In addition, based on the test results, the formulas about the skewed wind load factors and lift coefficients for both yawed and inclined wind angles of the equal angle steel are constructed, and relevant parameters are fitted.

Key words: wind tunnel test; equal angle steel; high-frequency-force-balance; wind force coefficient; skewed wind load factor **作者简介:**张庆华(1977—),男,副教授。电话:13513801798;E-mail:zqh@ncwu.edu.cn。