智能压电材料 MFC 在太阳电池阵帆板上的 主动抑振研究

骆海涛^{1,2},吴星元^{1,3},刘广明^{1,2},富 佳^{1,2}

(1.中国科学院沈阳自动化研究所机器人学国家重点实验室, 辽宁 沈阳 110016; 2.中国科学院机器人与智能制造 创新研究院, 辽宁 沈阳 110169; 3.沈阳理工大学机械工程学院, 辽宁 沈阳 110159)

摘要:为了有效解决空间太阳电池阵帆板由于振动对航天器位姿的干扰问题,进一步提高卫星和轨道器的飞控稳定性及 其自身的指向精度(对地和对日定向),设计了一套太阳电池阵帆板主动抑振地面实验系统,研究了压电纤维复合材料 (Macro Fiber Composite, MFC)的主动抑振机理,采用模态应变能最大理论确定了MFC的最佳粘贴区域。设计了一款 PID 自整定控制器,开展了太阳电池阵帆板系统的主动抑振实验,验证了PID 自整定控制算法的可行性。实验中分别进 行了自由振动状态下的抑振以及引入正弦干扰和白噪声干扰下的抑振研究。实验结果表明,在未施加主动控制时,帆板 自由振动趋于稳定的时间超过40 s;在采用了基于PID 自整定算法的主动控制后,帆板的自由振动可在3 s内趋于稳定。 此外,在上述正弦和随机白噪声两种信号干扰激励下,帆板的自激振动均能在3~5 s内得到有效控制,并且主动控制前后 帆板稳定于平衡位置的幅值从18 mm降到了3 mm,抑振效率达到6倍,效果明显。此外,通过对时域信号进行傅里叶变 换,从频谱曲线可知其抑振效果也非常显著,响应幅值最大从24 mm降低到了6 mm,抑振效率也达到4倍。

文章编号:1004-4523(2022)03-0536-08

关键词:主动控制;太阳能电池阵;MFC;PID 自整定
 中图分类号:TB535;V414.4⁺²
 文献标志码:A
 DOI:10.16385/j.cnki.issn.1004-4523.2022.03.002

引 言

在空间环境中,太阳电池阵在轨展开、对日定向 调整和受到航天器机动变轨所产生的干扰,均会使得 电池阵的帆板产生振动。太阳电池阵为薄壁结构,由 于自身几何尺寸大和材料非线性大变形的特性使得 电池阵柔度增大,而太空环境为低阻尼的状态,振动 难以得到快速衰减,长时间的持续振动会造成敏感器 件的破坏,航天器需要更长的时间和消耗更多的燃料 来进行姿态调整,还会影响到航天器或卫星本体的指 向精度和姿态稳定,对其姿态控制和工作造成极其不 利的影响。因此,为了保证航天器或卫星的指向精度 和姿态稳定,对太阳电池阵振动的快速抑制势在必行。

国内外关于电池阵主动抑振问题已有一定的研究,其中华南理工大学邱志成老师团队对电池阵系统 建立了特征模型,并通过线性二次型(Linear Quadratic Regulator, LQR)控制^[1]和正位置反馈控制(Positive Position Feedback, PPF)控制^[24]验证了主动控制 的可行性。Omidi等^[5]提出了改进的正位置反馈控制 (Modified Positive Position Feedback, MPPF), Williams等^[6]基于MFC设计了主动控制系统,用于悬臂 梁的主动抑振。Sharma等^[7]详细研究了压电材料在 不同工作模式下的驱动电压,以及相应的极化方向。 Vishal 等^[8]提出了一种用形状记忆合金丝作驱动器的 悬臂梁振动主动抑制方法,将压电纤维增强复合材料 应用于悬臂梁的主动抑振中^[9]。关于悬臂梁主动控制 中的致动器分布位置的研究,Guzmán等^[10]提出了一 种拓扑优化的致动器分布方法。Wang等^[11]使用光学 相机监测悬臂梁振动,通过Lyapunov方法进行系统 闭环稳定及主动控制时的模型预测[12-14]。在主动抑振 系统中,多是基于小型悬臂梁的系统验证,大型太阳 电池阵的控制系统应用很少,实际太阳电池阵由于结 构复杂,面临太空中的各种扰动,振动情况尤为复杂。 悬臂梁单端固定的分析方法与实际帆板的铰链安装 方法也有很大的区别,一些对于数学模型依赖较高的 算法即使在悬臂梁试验效果良好,应用到工况复杂的 帆板上仍然面临严峻的挑战。

本文针对太阳电池阵系统振动控制问题,设计 了一套基于 MFC 的振动主动控制系统。分析了

收稿日期: 2021-07-26; 修订日期: 2021-10-07

基金项目:国家自然科学基金资助项目(51975567);辽宁省"兴辽英才计划"资助项目(XLYC1907152);机器人学国家重 点实验室自主课题(2022-Z01);中科院青年创新促进会项目(2018237)。

MFC作为传感器和致动器的正逆压电效应机理;基 于系统辨识的方法,在实验的基础上建立了电池阵 振动的数学模型,通过应变能最大理论确定了MFC 最佳粘贴区域;采用PID自整定的控制算法,确立了 分立式MFC驱动器的振动控制参数,实现了可以 独立控制MFC抑振的目标。

1 抑振机理分析及数学模型建立

1.1 压电纤维复合材料抑振机理分析

压电陶瓷在悬臂梁的振动抑制中有着广泛的应用,但是压电陶瓷本身刚性较大,形变较小,所以 NASA基于压电陶瓷设计了一种新型复合材料即 MFC,由于本质是压电陶瓷,所以同样具有正逆压 电效应,MFC具有一定的柔度,同面积的MFC产生 的应变力大于压电陶瓷的十倍。本文基于正逆压电 效应,将MFC作为致动器和传感器,MFC内部结构 较为复杂,是由很多细条的压电陶瓷通过交叉电极 相连,这样即使其中的部分压电陶瓷发生断裂, MFC还是能完成一定的作为致动器或者传感器的 工作。MFC材料的工作原理解析如图1所示。

Fig. 1 MFC working principle

当 MFC 作为致动器时,根据逆压电效应,致动器的输出可以用电位移 D 和电场强度 E 来描述^[15]:

$$\begin{bmatrix} D_1 \\ D_2 \\ D_3 \end{bmatrix} = \begin{bmatrix} \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\ \varepsilon_{21} & \varepsilon_{22} & \varepsilon_{23} \\ \varepsilon_{31} & \varepsilon_{32} & \varepsilon_{33} \end{bmatrix} \begin{bmatrix} E_1 \\ E_2 \\ E_3 \end{bmatrix}$$
(1)

式中 电位移D的单位为C/m²,电场强度E的单位 为V/m, E_i 和 $D_i(i=1,2,3)$ 的下标表示分量沿参考 系的轴向。 ϵ_{ii} 为介电常数,表示介质极化程度,单位 为F/m,对于极化后的压电陶瓷材料,只有 $\epsilon_{11}=\epsilon_{22}\neq$ 0和 $\epsilon_{33}\neq 0,则:$

$$\begin{bmatrix} D_1 \\ D_2 \\ D_3 \end{bmatrix} = \begin{bmatrix} \boldsymbol{\varepsilon}_{11} & 0 & 0 \\ 0 & \boldsymbol{\varepsilon}_{11} & 0 \\ 0 & 0 & \boldsymbol{\varepsilon}_{33} \end{bmatrix} \begin{bmatrix} E_1 \\ E_2 \\ E_3 \end{bmatrix}$$
(2)

在上述情况下,压电陶瓷的输出也可以用应变 S和电场强度E来描述:

$$\begin{bmatrix} S_1\\S_2\\S_3\\S_4\\S_5\\S_6 \end{bmatrix} = \begin{bmatrix} d_{11} & d_{21} & d_{31}\\d_{12} & d_{22} & d_{32}\\d_{13} & d_{23} & d_{33}\\d_{14} & d_{24} & d_{34}\\d_{15} & d_{25} & d_{35}\\d_{16} & d_{26} & d_{26} \end{bmatrix}$$
(3)

式中 *d*为压电应变常数,表示压电元件将机械能转换 为电能或者电能转化为机械能的比例常数。对于极化 后的压电陶瓷,由于对称性,其压电应变常数矩阵为:

$$\begin{bmatrix} 0 & 0 & d_{31} \\ 0 & 0 & d_{32} \\ 0 & 0 & d_{33} \\ 0 & d_{24} & 0 \\ d_{15} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}^{\circ}$$

由于 $d_{31} = d_{32}, d_{15} = d_{24},$ 因此只有 d_{31}, d_{33} 和 d_{15} 三个独立分量。

压电材料的结构应变与应力*T*之间的关系,根据虎克定律有:

$$\begin{bmatrix} S_1 \\ S_2 \\ S_3 \\ S_4 \\ S_5 \\ S_6 \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} & S_{13} & S_{14} & S_{15} & S_{16} \\ S_{21} & S_{22} & S_{23} & S_{24} & S_{25} & S_{26} \\ S_{31} & S_{32} & S_{33} & S_{34} & S_{35} & S_{36} \\ S_{41} & S_{42} & S_{43} & S_{44} & S_{45} & S_{46} \\ S_{51} & S_{52} & S_{53} & S_{54} & S_{55} & S_{56} \\ S_{61} & S_{62} & S_{63} & S_{64} & S_{65} & S_{66} \end{bmatrix} \begin{bmatrix} T_1 \\ T_2 \\ T_3 \\ T_4 \\ T_5 \\ T_6 \end{bmatrix}$$
(4)

式中 S_{ij} 为弹性柔顺系数,它是描述介质弹性物理量, 单位为 m^2/N_{\circ} 。

根据式(3)和(4)构建联合公式,其分量的形式为:

$$S_i = s_{iu}^E T_u + d_{ji} E_j \tag{5}$$

式中 $s_{iu}^{E}T_{u}$ 为电场强度 E=0的情况下,由所受应力 引起的应变;第二项 $d_{ji}E_{j}$ 为外电场作用下产生的应 变。 s_{iu}^{E} 为短路弹性柔顺常数。

同理,电位移D则由其承受应力和电场强度产生,其张量分量形式为:

$$D_i = d_{iu}T_u + \varepsilon_{ij}^{T}E_j \tag{6}$$

式中 $d_{iu}T_u$ 为应力引起的的电位移: $\epsilon_{ij}^T E_i$ 为当应力 为0的情况下,由外电场作用产生的电位移, ϵ_{ij}^T 表示 应力T=0或者为常数时的介电常数。

式(5)和(6)是分别以电场强度 E_i和应力 T_a为 自变量的压电方程,也被称为第一类压电方程。当 然也有以其他变量构造的其他类的压电方程,本文 中以第一类压电方程进行描述。

对于 Smart Material 公司生产的 MFC, 根据电

极极化方向的不同,主要制作成以 d_{33} 和 $d_{31}效应工作的 MFC。本文中选用的两种 P1型 MFC 是以<math>d_{33}$ 效应工作的。基于 d_{33} 效应,当两极施加电压后,压电复合纤维会伸长或者缩短。当 MFC 作为致动器时,通过施加在电极上的电压可知此时 $E_3 \neq 0$, $E_1 = E_2 = 0$,因此将式(5)展开有:

$$\begin{bmatrix} S_{1} \\ S_{2} \\ S_{3} \\ S_{4} \\ S_{5} \\ S_{6} \end{bmatrix} = \begin{bmatrix} s_{11}^{E} & s_{12}^{E} & s_{13}^{E} & 0 & 0 & 0 \\ s_{21}^{E} & s_{22}^{E} & s_{23}^{E} & 0 & 0 & 0 \\ s_{31}^{E} & s_{32}^{E} & s_{33}^{E} & 0 & 0 & 0 \\ 0 & 0 & 0 & s_{44}^{E} & 0 & 0 \\ 0 & 0 & 0 & 0 & s_{44}^{E} & 0 \\ 0 & 0 & 0 & 0 & 0 & 2(s_{11}^{E} - s_{12}^{E}) \end{bmatrix} \begin{bmatrix} T_{1} \\ T_{2} \\ T_{3} \\ T_{4} \\ T_{5} \\ T_{6} \end{bmatrix} + \begin{bmatrix} 0 & 0 & d_{31} \\ 0 & 0 & d_{32} \\ 0 & 0 & d_{33} \\ 0 & d_{15} & 0 \\ d_{15} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ B_{3} \end{bmatrix}$$
(7)

通过上式可知,*S*₄,*S*₅,*S*₆均不反映施加电场后的影响,因此进一步简化该式有:

$$\begin{bmatrix} S_1 \\ S_2 \\ S_3 \end{bmatrix} = \begin{bmatrix} s_{11}^{E_1} & s_{12}^{E_2} & s_{13}^{E_3} \\ s_{12}^{E_2} & s_{22}^{E_2} & s_{13}^{E_3} \\ s_{13}^{E_3} & s_{13}^{E_3} & s_{33}^{E_3} \end{bmatrix} \begin{bmatrix} T_1 \\ T_2 \\ T_3 \end{bmatrix} + \begin{bmatrix} d_{31} \\ d_{31} \\ d_{33} \end{bmatrix} E_3$$
(8)

- -- - -

类似于式(5)展开,将式(6)展开有:

$$\begin{bmatrix} D_{1} \\ D_{2} \\ D_{3} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 & d_{15} & 0 \\ 0 & 0 & 0 & d_{15} & 0 & 0 \\ d_{31} & d_{31} & d_{33} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} I_{1} \\ T_{2} \\ T_{3} \\ T_{4} \\ T_{5} \\ T_{6} \end{bmatrix} + \begin{bmatrix} \varepsilon_{11}^{T} & 0 & 0 \\ 0 & \varepsilon_{11}^{T} & 0 \\ 0 & 0 & \varepsilon_{33}^{T} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ E_{3} \end{bmatrix}$$
(9)

观察上式可知,电位移*D*₁和*D*₂均不反映施加 电场后的影响,因此进一步化简该式有:

$$D_{3} = \begin{bmatrix} d_{31} & d_{31} & d_{33} \end{bmatrix} \begin{bmatrix} T_{1} \\ T_{2} \\ T_{3} \end{bmatrix} + \epsilon_{33}^{T} E_{3} \qquad (10)$$

综合式(8)和(10),可以得到MFC的第一类压 电方程:

$$\begin{bmatrix} S_1 \\ S_2 \\ S_3 \\ D_3 \end{bmatrix} = \begin{bmatrix} s_{11}^E & s_{12}^E & s_{13}^E \\ s_{12}^E & s_{11}^E & s_{13}^E \\ s_{13}^E & s_{13}^E & s_{33}^E \\ d_{31} & d_{31} & d_{33} \end{bmatrix} \begin{bmatrix} T_1 \\ T_1 \\ T_1 \\ T_1 \end{bmatrix} + \begin{bmatrix} d_{31} \\ d_{31} \\ d_{31} \\ d_{31} \end{bmatrix} E_3 \quad (11)$$

关于 MFC 粘贴位置的研究中,多是基于通过 有限元建立悬臂板的数学模型,以此作为理论依据 来确定 MFC 粘贴位置^[16],在本文中,通过 MSC. Nastran 软件分析,立足于最大应变能理论确定 MFC 最佳粘贴位置。对于帆板模型的结构和材料 参数如表1所示。

表1 抑振系统材料参数

Tab. 1 Material parameters of vibration suppression system

材料	尺寸/mm ²	密度/ (kg•m ⁻³)	弹性模量/ GPa
帆板模型	660×480	1865	34.64
M4312-P1	43×12	5440	30.34
M5628-P1	56×28	5440	30.34
铰链结构	48×32	7930	-

帆板模型的尺寸来源是"向日葵"卫星太阳翼单 板的实际尺寸,利用软件分析帆板模型的振动模态, 如图2所示,是帆板第1阶的应变分析图形。通过软 件设置采用应变显示选项,从图中可以看到最大应变 位置位于末端固定位置以及铰链连接的位置。

图2 帆板结构第1阶应变分析

Fig. 2 The first order strain analysis of sailboard structure

由于应变分布主要集中在帆板结构固定位置, 所以第1阶振型反映了主要的应变集中位置,这些 位置也是指导粘贴MFC的主要依据。表2所示是 通过模态分析的帆板前8阶的振型,主要反映的是 各阶的具体振动频率,刚度。

表 2 帆板模型模态分析振型表 Tab. 2 Modal analysis table of sailboard model

振型/阶	频率/Hz	刚度/(N·m ⁻¹)
1	$7.745260\!\times\!10^{-1}$	2.368273×10^{1}
2	4.352426	7.478639×10^{2}
3	4.583189	8.292687×10^{2}
4	1.356748×10^{1}	7.267052×10^{3}
5	1.399279×10^{1}	7.729798×10^{3}
6	2.568914×10^{1}	2.605307×10^{4}
7	2.575381×10^{1}	2.618441×10^{4}
8	3.906714×10^{1}	6.025361×10^4

1.2 帆板振动数学模型建立

在不考虑板结构非线性的情况下,可以将帆板的振动情况近似为一个2阶系统^[17]。典型的2阶系统传递函数为:

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$
(12)

式中 ζ为阻尼比;ω"为自由振动频率。

采用系统辨识的思想,通过激光位移传感器测得 帆板自由振动的波形。如图3所示是实验帆板安装的 位置关系,单板之间通过铰链进行连接。由于激光位 移传感器ZLDS103-250的起始量程为65mm,量程为 250mm,并且帆板振动是基于平衡位置做往复运动, 所以帆板和激光位移传感器间距190mm。

Fig. 3 Installation position relationship of sailboard

通过激光位移传感器测得帆板自由振动波形图, 如图4所示。数据采集通过LabVIEW作为上位机,由 通过软件模态分析得出的帆板的振型可知,帆板振动 的频率很低,所以设置1KS/s的采样率即采样周期为 *T_c*=0.001 s,足以满足要求。图中,横坐标表示的是采 样点数,反映的是时间,纵坐标表示的是振动幅度。

Fig. 4 Measurement of free vibration waveforms in sailboard experiment

已知2阶系统工作在欠阻尼的情况时,其振动 响应为:

$$y(t) = e^{-\zeta \omega_a t} \sin\left(\omega_a t + \arctan\frac{\sqrt{1-\zeta^2}}{\zeta}\right) \quad (13)$$

式中 $\omega_d = \sqrt{1 - \zeta^2} \omega_n$,为阻尼固有频率。

如图 4 所示的周期为 T 的自由振动波形中,取 t_1, t_2 两个时刻的峰值 y_1, y_2 ,两个时刻相差 k个周期, 对应的采样点分别为 n_1, n_2 ,由式(13)可得:

$$\frac{y_1}{y_2} = \frac{\mathrm{e}^{-\zeta \omega_n t_1}}{\mathrm{e}^{-\zeta \omega_n (t_1 + kT)}} = \mathrm{e}^{k\zeta \omega_n T} \tag{14}$$

其中:

$$\omega_n T = \omega_n \frac{2\pi}{\omega_d} = \frac{2\pi}{\sqrt{1-\zeta^2}} \tag{15}$$

将式(15)代入式(14)中,得到:

$$\zeta = \frac{\frac{1}{k} \ln \frac{y_1}{y_2}}{\sqrt{4\pi^2 + \left(\frac{1}{k} \ln \frac{y_1}{y_2}\right)^2}}$$
(16)

选中图中两个点 (n_1, y_1) 和 $(n_2, y_2), n_1 = 1034,$ $y_1 = 112.588, n_2 = 31808, y_2 = 2.742, k = 18, 代人$ 式(16)中,解得阻尼比 $\zeta = 0.033_{\circ}$

根据采样点以及采样周期可以求出帆板的振动 周期和频率分别为:

$$T = \frac{(n_2 - n_1)T_c}{k} = 1.710 \,\mathrm{s} \tag{17}$$

$$f = \frac{1}{T} = 0.584 \,\mathrm{Hz}$$
 (18)

由式(15)可得:

$$\omega_n = \frac{2\pi}{\sqrt{1 - \zeta^2} T} = 3.678 \text{ rad/s} \qquad (19)$$

将阻尼比ζ,自由振动频率ω_n代入式(12)可得 系统的传递函数为

$$H(s) = \frac{13.528}{s^2 + 0.241s + 13.528} \tag{20}$$

2 主动抑振实验研究

2.1 实验系统介绍

主动抑振系统包括上位机控制系统、信号采集 系统、数据转换系统、信号驱动系统、执行机构五部 分组成。

上位机控制系统是通过LabVIEW开发的,上位 机主要负责信号处理,由于上位机接收到的是USB-6002的信号,其中的信息是激光位移传感器输出的 0~10 V的电压信号,通过激光位移传感器对MFC 进行标定,这样LabVIEW处理的信号和Simulink仿 真的信号可以匹配,在Simulink中计算得到PID控 制参数也就能运用到实际的控制系统中。为了保证 初始振动的同一性,需要给出一个固定的初始激振 信号。整个上位机控制系统面板如图5所示。

图 5 上位机控制面板 Fig. 5 Upper computer control panel

信号采集系统由 MFC 作为传感器和激光位移 传感器,主要目的是利用激光位移传感器对 MFC 做 传感器进行标定,因为在太空中,使用激光位移传感 器测位移是不现实的。当 MFC 作为传感器时,由于 输入电阻的原因,直接测量的电压会失真,所以采用 两个1 MΩ的电阻对 MFC 采集的电压分压。USB-6002 测试的最高电压为 10 V,将分压后的信号再输 入USB-6002 中,这样就可以避免失真。

数据转换系统采用的是NI公司的数字板卡 USB-6002,该板卡能采集8路分辨率为16位的模拟 信号,最大采样率可达50KS/s,同时该板卡具有两 个16位D/A转换输出,适合本实验中应用。

信号驱动系统采用的是适配 MFC 的驱动器, 是由 Smart Material 公司生产的 AMD2012-CE2/3 驱动板,该驱动板最大输出功率可达4 W,输出电压 为-500~+1500 V。

执行机构以MFC作致动器,本课题使用的MFC有M-5628-P1和M-4312-P1两种类型,极限输出力分别为340和120N。整个系统的控制流程图如图6所示。

2.2 基于 PID 自整定的主动控制算法

在 PID 控制中,需要知道控制参数的值,由于 PID 设置参数的值一般需要丰富的经验,为了缩短 调节参数的时间,将帆板振动的数学模型导入 Simulink中,通过软件模拟的方式,快速得到一组或 者几组比较合理的控制参数,这里使用的是 PID 自 整定的方式,可以快速求得 PID 控制参数。

在 Simulink 中, 绘制 PID 自由振动模型及 PID 控制模块, 整体框图如图 7 所示。

如上图所示,输入信号为一个阶跃信号,其值为:

$$r(t) = \begin{cases} 0, & t < 0\\ 125, & t \ge 0 \end{cases}$$
(21)

式中的终值125是激光位移传感器的测量极限范围的1/2,在实验中设为0点的位置。为了方便观察和

Fig. 7 Block diagram of Simulink parameter setting system

理解在结果输入示波器模块前再减125,这样就可以在Simulink的示波器中观察到测量数据是在以y=0为基准变化的。

PID 控制的主要依据是通过输入信号r(t)与输出信号y(t)构成控制偏差e(t),即:

$$e(t) = r(t) - y(t) \tag{22}$$

PID 控制器是一种线性控制器,通过线性组合 偏差的比例、积分、微分,将三者作为控制量进而控 制受控对象。其控制规律为:

$$u(t) = K_{p}\left[e(t) + \frac{1}{T}\int_{0}^{1}e(t)dt + T_{d}\frac{de(t)}{dt}\right] (23)$$

其传递函数为:

$$G(s) = \frac{U(s)}{E(s)} = K_{\rho} \left(1 + \frac{1}{T_{i}s} + T_{d}s \right) \quad (24)$$

式中 K_p 为比例系数, T_i 为积分时间常数, T_d 为微分时间常数。

在Simulink的PID模块中,传递函数为:

$$G(s) = P + I \frac{1}{s} + D \frac{N}{1 + N \frac{1}{s}}$$
(25)

式中 P为控制的比例参数,I为积分参数,D为微 分参数,N为滤波系数。对比式(24)和(25)可以看 到 Simulink的 PID 参数和传递函数的系数的差异, 所需要的是 PID 的参数。

在被控对象模块中输入式(20)的各项系数,输 入形式为数组,如图8所示。

Transfer Fcn		
The numerator The denominator equals the num should specify s.	coefficient can be a vector or matrix or coefficient must be a vector. The ou mber of rows in the numerator coefficient y the coefficients in descending order of	expression tput wid nt. You of power
Parameters		
Numerator coe	fficients:	
[13.528]		
Denominator co	oefficients:	
[1 0.241 13.5	528]	
Absolute tole	rance:	
auto		
State Name: (e.g., 'position')	
, ,		

图 8 被控对象传递函数输入

Fig. 8 Transfer function input of controlled object

为了形成控制输入的对比,需要引入两组相同 的传递函数,其中一组不引入PID控制直接输出。

在完成输入模块,PID模块以及被控对象模块 等模块的参数设置之后,便可利用Simulink进行参 数自整定从而得到一组比较合适的PID控制参数。 在Matlab 2020a中能够比较方便地利用Simulink的 工具包得到想要的的参数。通过Simulink自整定之 后的参数如图9所示。

2.3 太阳能电池阵抑振效果评价

为了保证系统振动的初始激振信号一致,通过 前面的实验波形可知,帆板的自由振动波形的频率 为0.586 Hz。所以,在上位机中设置激振频率与自 由振动的频率相同,激振信号幅值为5 V,频率为 0.586 Hz的正弦信号,如图10所示。

图 10 初始激振信号 Fig. 10 Initial excitation signal

通过上位机,可以采集到的三组振动信号,其中 有两组由MFC作为传感器采集,另一组由激光位 移传感器采集,激光位移传感器采集的信号主要用 于做参数标定并且保证与MFC的数据匹配。

由于激光位移传感器的位置定于中轴线上,所 以只能采集弯曲振动的信号,而扭转振动的信号可 通过传感器MFC采集。

通过采集的激光位移传感器的信号作为反馈, 在 LabVIEW 上编写 PID 控制程序,由于前期仿真 使用实际模型仿真,在 Simulink 中通过自整定 PID 得到的 PID 参数为 $k_{e}=-0.512$, $k_{i}=0.724$, $k_{p}=$ 0.424。由于实际模型和在 Simulink 中的仿真模型 通过前期的参数标定,所以直接将仿真得到的控制 参数代入 LabVIEW 控制程序中,实验结果如图 11 所示。

Fig. 11 Experimental comparison of free vibration with and without control

为了验证帆板在有干扰的环境下主动抑振效果, 分别加入正弦波干扰、白噪声干扰。其中,正弦信号 的幅值为5V,频率为0.586 Hz。图12所示为引入正 弦波干扰的情况下,有无控制的波形对比;图13所示 为引入白噪声干扰的情况下有无控制的波形对比。

Fig. 12 Comparison of sine wave interference with and without control

通过实验数据可以看到,自由振动在无主动抑 振时呈负指数衰减,与数学模型对应,在引入PID控 制的三个振动周期后,振动得到了有效抑制,并且维 持在一个比较稳定的范围内。

通过图 12 和 13 可以看出:当引入干扰后,帆板

的振动状态发生了改变。而这两种干扰状态下 PID 的控制参数都是相同的,但是从图中可以看出,相同 的 PID 控制参数对于两种不同的干扰,仍然具有良 好的抑振效果。

如图14所示,为自由振动情况下对有无主动控制的波形的快速傅里叶变换(以下简称FFT(Fast Fourier Transform),从图中可以看到,对于在共振频率下的振动抑制较为明显,这说明在基于MFC的主动抑 振过程中,MFC的抑振是给帆板一个相同频率的反 作用力来达到抑制振动的目的,帆板的固有频率是需 要实验和仿真测得的,也是前期建立数学模型和实验 的必要参数。

类似地,在引入干扰的情况下,图15所示为正 弦波干扰输入时,有无主动控制的FFT变换波形对 比;图16所示为白噪声干扰输入时,有无主动控制 的FFT波形对比,从图中可以观察到,不同干扰输 入的情况下,主动控制的效果是类似的,都能对基频 附近的振幅有较明显的抑制作用。

Fig. 15 $\,$ FFT in the case of sinusoidal interference input $\,$

实验中提供的干扰信号是自然界中普遍存在的,在现有实验条件下,干扰激励的MFC为M-4312-P1型,此MFC提供的最大输出力为120N,要比M-5628-P1型MFC的最大输出力340N要小,这也就是在引入干扰后振动幅值有所下降的原因。

Fig. 16 FFT in the case of white noise interference input

3 结 论

本文设计了一套基于压电纤维复合材料MFC的 太阳电池阵帆板主动抑振系统,该系统基于MFC的逆 压电效应在MFC上加载电压,使其产生驱动力用于抑 制帆板的振动。开展了基于MFC的抑振机理分析,推 导了电池阵帆板的振动模型。在此基础上,采用高性 能的PID控制算法,实现了电池阵帆板的主动抑振。 通过对比自由振动以及正弦和白噪声两种干扰信号激 励下的自激振动,详细研究了主动抑振实验中抑振稳 定时间和抑振稳定振幅两项重要指标,最终结论如下。

(1) 通过建立 MFC 的压电效应方程和理论推导,验证了 MFC 作为致动器和传感器的可行性。 采用两种规格的 MFC 分别作为致动器和传感器, 基于应变能最大理论,获到了 MFC 的最佳粘贴位 置,得到的控制效果更好。

(2)将 PID 自整定的控制算法应用于帆板的振动主动控制中,提高了系统开发效率,减小了控制算法对帆板模型的依赖。由于帆板柔度较大,振动频率较低,PID 自整定的响应速度能够满足振动抑制的需求。在太空环境中,PID 自整定具有良好的自我调节能力,能够有效防止驱动器失控的情况发生。

(3)本文设计的系统能够有效地降低基频附近的振动,并且在各种外部输入扰动的情况下,依然能 有效地抑制帆板的振动。在自由振动和各种干扰输 入的情况下,引入控制后都能在3~5s内进入到平 衡状态,振动抑制偏差小于3mm,抑振效率可达4 倍以上,抑振效果显著,达到了预期的效果。

参考文献:

[1] 邱志成. 压电智能挠性板的主动振动控制研究[J]. 压电与声光,2002,24(6):497-501.
 QIU Zhi-cheng. A study on active vibration control for piezoelectric intelligent cantilever plate [J]. Piezoelec-

trics & Acoustooptics, 2002, 24(6): 497-501.

- [2] Qiu Z C, Han J D, Zhang X M, et al. Active vibration control of a flexible beam using a non-collocated acceleration sensor and piezoelectric patch actuator[J]. Journal of Sound & Vibration, 2009, 326(3-5): 438-455.
- [3] 鄂斌,杨志红,崔乃刚,等.航天器柔性太阳翼最优 PPF主动振动抑制方法[J].宇航学报,2020,41(6): 800-810.

E Bin, Yang Zhihong, CUI Naigang, et al, Active vibration suppression of spacecraft's flexible solar panel with optimal PPF method [J]. Journal of Astronautics, 2020, 41(6): 800-810.

- [4] Yuan Q, Liu Y, Qi N. Active vibration suppression for maneuvering spacecraft with high flexible appendages[J]. Acta Astronautica, 2017, 139: 512-520.
- [5] Omidi E, Mahmoodi S N, Shepard W S. Multi positive feedback control method for active vibration suppression in flexible structures[J]. Mechatronics, 2016, 33: 23-33.
- [6] Williams D, Khodaparast Haddad H, Jiffril S, et al. Active vibration control using piezoelectric actuators employing practical components [J]. Journal of Vibration and Control, 2019, 25(21-22): 2784-2798.
- [7] Sharma Saurav, Kumar Anuruddh, Kumar Rajeev, et al. Active vibration control of smart structure using poling tuned piezoelectric material[J]. Journal of Intelligent Material Systems and Structures, 2020, 31(10): 1298-1313.
- [8] Vishal P, Kaliperumal D, Padhi R. Active vibration suppression of nonlinear cantilever beam using shape memory alloy actuators [J]. IFAC-PapersOnLine, 2018, 51(1): 130-135.
- [9] Prakash B, Amir M, Yasin M Y, et al. Active vibration control of smart laminated beams using PFRC patches as sensors and actuators [J]. Materialstoday: Proceedings, 2020, 21: 1355-1360.
- [10] Guzmán Daniel Giraldo, Silva E C N, Rubio W M. To-

pology optimization of piezoelectric sensor and actuator layers for active vibration control [J]. Smart Materials and Structures, 2020, 29: 085009.

- [11] Wang Z, Jia Y, Xu S, et al. Active vibration suppression in flexible spacecraft with optical measurement[J]. Aerospace Science and Technology, 2016, 55: 49-56.
- [12] Djojodihardjo H, Jafari M, Wiriadidjaja S, et al. Active vibration suppression of an elastic piezoelectric sensor and actuator fitted cantilevered beam configurations as a generic smart composite structure[J]. Composite Structures, 2015, 132: 848-863.
- [13] Dubay R, Hassan M, Li C, et al. Finite element based model predictive control for active vibration suppression of a one-link flexible manipulator [J]. ISA Transactions, 2014, 53(5): 1609-1619.
- [14] Cao X, Yue C, Liu M. Flexible satellite attitude maneuver via constrained torque distribution and active vibration suppression[J]. Aerospace Science and Technology, 2017, 67: 387-397.
- [15] 张锦.基于压电纤维复合材料的柔性结构振动半主动 控制研究[D].南京:南京航空航天大学, 2015.
 Zhang Jin. A study on semi-active vibration control of flexible structures using macro fiber composite actuators
 [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015.
- [16] 张思马.基于激光位移传感器测量的柔性板振动控制 研究[D].广州:华南理工大学,2016.
 Zhang Sima. Research on vibration control of flexible plate using laser displacement sensors[D]. Guangzhou: South China University of Technology, 2016.
- [17] 彭一峰.基于模糊 PID 控制理论的振动主动控制研究
 [D].大连:大连理工大学,2013.
 Peng Yifeng. Research on active vibration control based on fuzzy PID control theory[D]. Dalian: Dalian University of Technology, 2013.

Active vibration suppression of intelligent piezoelectric material MFC on solar array panel

LUO Hai-tao^{1,2}, WU Xing-yuan^{1,3}, LIU Guang-ming^{1,2}, FU Jia^{1,2}

(1.State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences (CAS),

Shenyang 110016, China; 2.Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China; 3.School of Mechanical Engineering, Shenyang Ligong University, Shenyang 110159, China)

Abstract: In order to effectively solve the position and attitude interference problem of spacecrafts caused by the vibration of the space solar array sailboard, further improve the flight control stability of satellites and orbiters and their own pointing accuracy (earth and sun orientation), a set of solar array active vibration suppression ground experimental system is designed. The active vibration suppression mechanism of macro fiber composite (MFC) is studied. The optimal bonding area of MFC is determined by the maximum modal strain energy theory. A PID self-tuning controller is designed, and the active vibration suppression experiment of the solar array is carried out to verify the feasibility of the PID self-tuning control algorithm. In the experiment, the vibration suppression in free vibration state, sinusoidal interference and white noise interference are studied respectively. The experimental results show that the free vibration tends to be stable for more than 40 s without active control. After adopting the active control based on PID self-tuning algorithm, the free vibration of the sailboard can be stabilized within 3 s. In addition, the self-excited vibration of the sailboard can be effectively controlled in $3\sim 5$ s under the above sinusoidal and random white noise signal interference excitation, and the amplitude of the sailboard stabilized in the balance position before and after active control is reduced from 18 to 3 mm, and the vibration suppression efficiency is up to 6 times. In addition, through the Fourier transform of the time-domain signal, it can be seen from the spectrum curve that the vibration suppression efficiency can reach 4 times.

Key words: active control; solar array; MFC; PID self tuning

作者简介:骆海涛(1983—),男,博士,研究员。电话:13130216191; E-mail:luohaitao@sia.cn。