快速谐波荷载作用下仿古建筑双枋-柱组合件 力学性能研究

董金爽^{1,2},公衍茹¹,隋 龑²,翟 磊²,黄 斌¹

(1. 海南大学土木建筑工程学院,海南海口 570228;2. 西安建筑科技大学土木工程学院,陕西西安 710055)

摘要:为研究仿古建筑双枋-柱组合件的破坏特征及力学性能,选取典型仿古建筑双枋-柱组合件作为模型结构,该 结构采用钢-混凝土组合结构,并在枋-柱连接处设置黏滞阻尼器,采用快速谐波往复荷载形式的加载制度,对3个该 类型结构模型的力学性能进行研究,其中包括2个布设黏滞阻尼器的试件及1个未布设阻尼器的对比试件。在试验 研究的基础上,对其力学性能关键指标进行分析,包括滞回曲线、骨架曲线、延性性能及强度和刚度退化等。分析结 果表明:采用钢-混凝土组合结构及通过合理设置黏滞阻尼器可显著提升仿古建筑关键受力节点的力学性能。布设 黏滞阻尼器后双枋-柱组合件的滞回曲线包络的面积更大,骨架曲线下降段更平缓,变形能力有显著改善。承载能 力提高13.9%~14.1%,延性提高13.0%~18.6%;黏滞阻尼器与结构可协同受力,显著改善结构破坏阶段的变形性 能,提高结构的抗倒塌能力。

关键词:仿古建筑;双枋-柱组合件;谐波荷载;力学性能
中图分类号:TU398 文献标志码:A 文章编号:1004-4523(2023)04-1073-10
DOI:10.16385/j.cnki.issn.1004-4523.2023.04.021

1 概 述

仿古建筑是指采用现代建筑材料(如混凝土、钢 材等),建造形似古建筑的一种建筑结构形式,它在 继承传统建筑文化的基础上又对其有一定的创新, 尤其在历史文化名城得到了较为广泛的应用^[12],如 图1所示。

近年来,国内学者针对仿古建筑开展了一系列 相关研究,主要集中在提升仿古建筑的艺术性、相关 施工工艺及施工技术、结构(构件)力学性能等方面。 薛建阳等^[35]和Xue等^[6]针对混凝土结构及钢结构仿 古建筑梁-柱节点进行了拟静力试验研究和仿古建 筑结构地震模拟振动台试验,结果均表明:采用钢-混凝土组合结构及钢结构的仿古建筑具有良好的抗 震性能,可满足现行规范的相关规定,钢结构仿古建 筑节点滞回性能良好;隋龑等^[79]进行的正弦波快速 往复荷载作用下的混凝土仿古建筑梁-柱节点试验 表明,在仿古建筑节点设置黏滞阻尼器可显著提升 其力学性能;谢启芳等^[10-11]进行的混凝土仿古建筑 双梁-柱节点试验表明其延性系数较低,抗震性能不 满足现行规范的要求。

(a) 西安楼观台
(b) 开封翰园
(a) Louguan Temple of Xi'an
(b) HanYuan park of Kaifeng
图 1 仿古建筑工程应用实例
Fig. 1 The project cases of antique buildings

当前,针对仿古建筑中典型的双枋-柱节点相关 研究很少。双枋-柱节点核心域面积较大,其受力性 能及变形特点与常规节点有较大不同,且仿古建筑 柱多为变截面,上柱截面尺寸小于下柱,导致上柱轴 压比较大。同时,当前针对仿古建筑节点试验多采 用拟静力试验,这与构件在地震作用下的受力性能 有一定的差异。

鉴于此,针对仿古建筑双枋-柱节点试件,其上 柱采用钢-混凝土材料,并设置黏滞阻尼器,设计了3 个典型仿古建筑双枋-柱组合件试件,对其施加快速 往复荷载,分析其变形性能及受力特点,以期为仿古 建筑在实际工程中的相关设计提供参考。

收稿日期: 2022-01-07;修订日期: 2022-03-14

基金项目:海南省自然科学基金资助项目(520RC544);国家重点研发计划资助项目(2019YFD1101003);海南省重大科技 计划资助项目(ZDKJ201803);国家自然科学基金资助项目(52068019);陕西省自然科学基础研究计划资助项 目(2021JM-367)。

2 试验概况

2.1 典型双枋-柱节点

仿古建筑形制仿自古木结构,国内常见仿古建 筑多为殿堂式建筑,其等级多为一等材或二等材。 如图2(a)所示,结构整体构架的外围檐柱通过横向 上下两根梁连接,该梁称为"额枋",为矩形截面,宋 制称为阑额、由额。与常规梁柱节点相比,双枋-柱 节点核心域面积较大,划分为上、中、下三个核心区 域,如图2(b)示,受力特点和变形特征也与常规 梁-柱组合件显著不同。

图2 仿古建筑双枋-柱节点基本构造形式

Fig. 2 Basic structure of antique buildings dual lintel-column joint

2.2 试件设计

共设计3个试件,试件编号分别为DV-1,DV-2, DV-3,其中DV-1为对比试件。试件缩尺比依据文 献[12]中古木结构材份制规定,并结合舟山佛学院 实际工程确定为1:2.6。

各试件基本尺寸及配筋形式如图3所示,采用C40 商砼,混凝土配合比如表1所示,试验轴压比n=0.25,轴 压荷载_{fek}根据实测确定,方钢管采用Q235B,截面 尺寸为160 mm×160 mm,厚度为5.5 mm。各试件 中阑额及由额为钢筋混凝土结构,上柱为方钢管混 凝土结构,下柱为钢筋混凝土结构。钢材力学性能 如表2所示。

2.3 黏滞阻尼器设计参数

根据试验特点,选择速度型黏滞阻尼器,其设计 参数如表3所示。黏滞阻尼器与试件连接基本设计 尺寸参数如图4及表4所示。黏滞阻尼器与试件连 接示意图如图5所示。

如图6所示,试件制作时,于双耳连接器位置预 埋钢板,试验前,将双耳连接器焊接于预埋钢板上, 将黏滞阻尼器两端螺栓孔与双耳连接器螺栓孔对 准,插入螺栓固定。

Fig. 3 Size and construction details of specimens (Unit:mm)

表1 混凝土配合比(单位:kg/m³) Tab.1 Proportions of concrete mix(Unit:kg/m³)

等级	水泥品种	水泥	中砂	细石	水	减水剂
C40	P.O 42.5R	340	795	969	166	13.58

表2 钢材材性指标

Tab. 2 Mechanical performance indics of steel

类型	尺寸/	屈服强度/	屈服应变/	极限强度/	弹性模量/
	mm	MPa	10^{-6}	MPa	GPa
钢管	<i>t</i> =5.5	259.8	1299	378.8	200
	$\Phi 8$	312.5	1524	450.3	205
钢筋	⊉ 10	449.6	1395	576.3	201
	$\Phi 12$	438.4	2225	582.5	197

表3 黏滞阻尼器设计参数

Tab. 3 Design parameters of viscous dampers

				-
试件编号	F/kN	$C/(\mathrm{kN}\cdot\mathrm{s}\cdot\mathrm{m}^{-1})$	α	s/mm
DV-2	80	88	0.36	± 30
DV-3	50	60	0.30	± 30

注:F为阻尼器设计荷载;C为阻尼系数;a为阻尼指数;s为设计位移。

2.4 加载方案

图7为加载装置,图7中右侧数字表示试件及加载设备各部分的相对高度。其中,竖向荷载由液压 千斤顶施加,水平作用由MTS加载设备施加。整 个加载过程分为两步:(1)竖向荷载施加至设计值 后加载全过程保持不变;(2)由MTS加载设备根据 预定加载制度施加水平作用。

- 图4 黏滞阻尼器与试件连接示意图
- Fig. 4 Schematic diagram of connection between viscous damper and specimen

表4 黏滞阻尼器与试件连接基本设计尺寸参数

 Tab. 4
 Basic design dimension parameters of the connection between viscous damper and specimen

尺寸参数	具体数据
a/mm	550
<i>b</i> /mm	830
$ heta/(\degree)$	60
L/mm	770
$L_{\rm b}/{ m mm}$	165

注:a,b分别为阻尼器水平投影长度、垂直高度;θ为阻尼器与柱之 间夹角;L为阻尼器长度;L_b为阻尼器的支座高度。

加载时,由额两端与地面通过高强螺栓及定向 铰支座相连,上下额枋间安置双枋连接器确保额枋 间不产生弯矩和剪力,只传递竖向力,且上下梁之间 保持一定的竖向距离,如图8所示。

Fig. 8 Schematic diagram of double beam connector

目前试验多采用拟静力加载方式,以模拟地震 作用下结构(构件)在往复受迫振动中的力学特征, 因此拟静力试验是应用静力的方法对结构在静力荷 载作用下的力学性能进行研究,在一定程度上不能 反映动力荷载作用下结构的破坏特征和破坏模式。 现有地震理论认为可得地震分解为基频为ω1一定 倍数的简谐振动分量。因此,本试验采用快速施加 谐波作用的加载制度。

试验时通过控制加载位移及频率施加快速往复 作用。加载频率根据不同加载工况下谐波荷载的峰 值加速度反推得出,谐波加速度的峰值以《中国地震 烈度表》(GB/T 17742—2020)^[13]中地震烈度的划分 及其对应的速度作为依据。根据设置阻尼器结构的 层间弹塑性位移角应满足规范限制要求确定控制 位移。

综合考虑黏滞阻尼器的动力和疲劳测试方法及 加载设备的安全性能,每一工况均循环5次,加载制 度如表5及图9所示。图9中每个工况的间隔为各 工况加载完毕后试验现象观察所需的时间。

表 5 试验加载工况 Tab. 5 The test loading cases

工况	а	\$	f	工况	а	S	f
1	80	5	2.01	7	550	53	1.62
2	125	8	1.99	8	578	65	1.55
3	200	11	2.15	9	593	77	1.43
4	300	15	2.25	10	650	88	1.37
5	425	27	2.00	11	750	106	1.34
6	480	40	1.75	12	850	133	1.27

注:a为加速度(cm/s²);s为控制位移(mm);f为频率(Hz)。

3 试验主要结果及分析

对3个仿古建筑双枋-柱组合件试件进行谐波 荷载快速往复作用试验,测得其相关试验数据。其 中试件DV-1加载至工况10时由于试件已不能承受 所施加的轴向荷载而终止试验,其余两个试件均加 载至工况12终止试验。

3.1 试件荷载-位移滞回曲线

将各试件每个工况下第一圈循环的荷载-位移 曲线绘制于一张图中,得到各试件荷载-位移滞回曲 线,如图 10 所示。由于在快速加载时,设备在送油 及回油过程中,不能一直处于稳定加载状态,具有一 定的浮动,虽然试件*P-*Δ曲线呈现一定的锯齿状,但 仍能客观全面地反映试件的力学特征。对比分析各 滞回曲线可知:

(1)各试件在加载初期(控制位移≤15 mm), 其滞回曲线基本呈条状分布,曲线包围的面积较小, 卸载至零后无显著残余变形,荷载与位移的比值基 本满足线性分布函数关系。

(2)控制位移逐渐增大(15 mm<控制位移≤ 65 mm),各曲线逐渐呈现非线性性质,曲线包围的 面积逐渐增大,表明其耗能性能逐渐增强,卸载至零 时有较为显著的残余变形,荷载与位移的比值呈现 非线性特性,表明试件强度及刚度逐渐衰减,累积损 伤逐渐增大,表现为试件裂缝出现并扩展,混凝土压 碎剥落,钢筋屈服等。

(3)加载后期(65 mm<控制位移≪115 mm), 各试件滞回环荷载基本保持不变,而位移逐渐增大, 类似"塑性铰",试件变形能力较强;加载过程中,各 试件滞回曲线随着控制位移的不断增大,滞回环的 形状逐渐由弓形向反"S"形过渡。

(4)设置黏滞阻尼器后试件 DV-2, DV-3 的滞回曲线较未设置阻尼器试件 DV-1 更为饱满, 承载能力更高, 表明设置黏滞阻尼器可显著改善仿古建筑双枋-柱组合件的力学性能, 有效地提升了其变形性能。

3.2 试件骨架曲线

取各试件荷载-位移滞回曲线外包轮廓线形成 的骨架曲线如图11所示。由图11可知:

(1)加载初期,各试件骨架曲线基本重合,说明 该阶段的刚度基本无差异,由此表明设置黏滞阻尼 器对仿古建筑双枋-柱组合件小变形的弹性工作阶 段影响不显著;随控制位移的逐渐增大,各试件骨架 曲线逐渐呈现较大差异,设置阻尼器试件刚度及承

Fig. 11 Skeleton curves of P- Δ of all specimens

载能力均大于对比试件,表明设置阻尼器可显著提 高组合件的承载能力及抗侧移性能。

(2)未设置阻尼器的对比试件 DV-1 骨架曲线 超过峰值点后下降段荷载回跌落幅度较大,结合试 验现象分析可知,试件此时已基本为可变体系,几乎 无承载能力,这是由于双枋-柱试件由于同时布置阑 额与由额,加载后期试件变形较大时,两者变形及应 力分布不一致所导致。设置阻尼器后试件的下降段 荷载回落更为平缓,试件仍具有一定的承载能力。 加载后期,阻尼器又可作为支撑使结构仍为不变体 系,由此表明通过在由额与柱连接处合理地设置黏 滞阻尼器可显著改善试件的抗倒塌能力及变形 性能。

(3) 对加载全过程分析可知,各试件均经历了

试件开裂、屈服、达到峰值状态及试件的破坏,但骨 架曲线上并未有明显的开裂点及屈服点,这说明裂 缝刚出现时对试件承载能力等力学特性影响较小。 同时骨架曲线上并未表现出明显的屈服点,表明试 件的屈服是一个从点到面、从局部到整体逐渐扩散 的动态过程。

3.3 阻尼器阻尼力-位移滞回曲线

以黏滞阻尼器试件 DV-2为例,选取工况 6,9, 12下黏滞阻尼器的阻尼力-位移滞回曲线进行分析, 如图 12所示,图中左侧与右侧阻尼器按图 7 所示布 置位置。分析图 12 可知:

(1)随着控制位移的不断增大,阻尼器阻尼力-位移滞回曲线包围的面积及形状随之发生改变,滞 回曲线包围的面积逐渐增大,表明阻尼器逐渐参与 试件耗能,与试件协同工作抵抗外界作用;滞回曲线 形状由不饱满的条状逐渐向较为饱满的哑铃状转 变;随着各试件控制位移的增大,阻尼器的阻尼力随 之增大,且其随着加载速率的不同而不同,体现了速 度型黏滞阻尼器受力特点。

(2)阻尼器在参与受力过程中并未发生塑性变形,每工况下各循环5圈形成的阻尼器的阻尼力-位移滞回曲线并非完全重合,各滞回曲线间有一定的错动,这是由于实际加载过程中随着循环次数的增加,试件损伤累积及刚度和强度逐渐衰减,位移不变

Fig. 12 Hysteretic loops of $F-\Delta$ viscous damper DV-2

时,试件变形增大,阻尼器与试件协同工作导致其每次循环的位移有一定差异。阻尼器滞回曲线左右两侧并非完全对称,这是由加载时试件左右两侧变形 及累计损伤不一致导致。

3.4 承载能力及延性

承载能力及延性性能是表征结构(构件)力学性 能的关键指标,延性性能是结构(构件)达到峰值荷 载后剩余承载能力及抗倒塌能力的主要体现。各试 件各荷载特征值如表6及图13所示,其中屈服荷载 P,按能量等效面积法确定。位移延性系数取破坏位 移与屈服位移的比值,定义层间位移角λ为试件上柱 柱顶水平位移与试件高度的比值。计算结果如表7 所示。

Fig. 13 Characteristic values comparison of specimens

	表 6	试件特征点荷载及位移值
Tab. 6	Charac	cteristic load and displacement value

试件编号		屈刖	屈服点		极限点		不点
		P_{y}	$\Delta_{\rm y}$	$P_{\rm u}$	$\varDelta_{\rm u}$	$P_{\rm m}$	$\Delta_{\rm m}$
DV-1	推	38.9	26.8	43.9	39.5	37.3	62.8
	拉	33.5	29.4	40.7	39.5	34.6	64.2
DIA	推	45.0	26.5	50.9	39.1	43.2	77.4
DV-2	拉	38.5	31.2	45.5	39.6	38.7	76.1
DV-3	推	44.1	31.9	50.1	39.0	42.6	79.0
	拉	39.9	31.7	46.4	39.5	39.4	83.5

注:荷载P单位为:kN,位移△单位为:mm。

表 7 各试件变形能力 Tab. 7 Ductility coefficient of specimen

试件组	扁号	$\varDelta_{\rm y}$	$\varDelta_{\rm m}$	λ_{y}	λ_{m}	μ	$\overline{\mu}$
DV-1	推	26.8	62.8	1/99	1/42	2.34	0.00
	拉	29.4	64.2	1/90	1/41	2.18	2.20
DV-2	推	26.5	77.4	1/99	1/34	2.92	0.00
	拉	31.2	76.1	1/85	1/35	2.44	2.68
DU 9	推	31.9	79.0	1/83	1/34	2.48	0.50
DV-3	拉	31.7	83.5	1/84	1/32	2.63	2.56

注: θ为层间位移角,为水平位移与试件高度的比值。

对比分析可知,各试件峰值荷载从高到低依次 为DV-2,DV-3,DV-1,设置黏滞阻尼器的仿古建筑 试件承载能力较高。相比于对比试件DV-1,试件 DV-2,DV-3承载能力分别提升13.9%和14.1%,屈 服荷载分别提升15.3%和16.2%,由此表明设置黏 滞阻尼器可较大程度提升仿古建筑双枋-柱组合件 的力学性能。实际工程中可在外围檐柱由额与柱连 接处的雀替位置设置阻尼器以提升结构的承载 能力。

各试件位移延性系数由大到小依次为DV-2, DV-3,DV-1,相比于试件DV-1,前两者位移延性系 数分别提高18.6%和13.0%,说明设置阻尼器可提 高双枋-柱节点结构的抗倒塌能力及变形性能,有效 地提高了结构在地震高烈度地区的使用性能。

峰值荷载时,DV-2,DV-3的层间位移角分别为 DV-1的0.96倍和0.88倍,极限破坏时,DV-2,DV-3 的层间位移角分别为DV-1的0.83倍和0.78倍,满 足《混凝土结构设计规范》(GB 50010—2010)对结 构弹塑性变形及抗倒塌能力的要求,表明采用钢-混 凝土组合结构的双枋-柱组合件和设置阻尼器使仿 古建筑结构力学特性有较大程度的提升。

3.5 耗能能力分析

各试件耗能能力采用等效黏滞阻尼系数 h。和功 比系数 I_w^[14]表征。各试件耗能指标计算结果如表 8 所示。各试件每个工况下第一圈循环时的等效黏滞 阻尼系数如图 14 所示。

表 8 试件耗能指标 Tab. 8 Indics of energy dissipation

试件编号	$h_{ m ecr}$	$h_{ m ey}$	$h_{\scriptscriptstyle\mathrm{eu}}$	$h_{ m em}$	$I_{\rm W}$
DV-1	0.085	0.132	0.179	0.212	14.25
DV-2	0.092	0.181	0.262	0.386	15.61
DV-3	0.093	0.178	0.267	0.391	16.65

注: $h_{ecr}, h_{ev}, h_{eu}, h_{em}$ 分别为开裂点、屈服点、峰值点、破坏点的 h_{eo}

对比分析表8及图14可知:

(1) 在开裂阶段,即工况1和工况2,各试件耗能力较低,同时各试件的滞回曲线基本呈长条状, 包围面积较小。与DV-1相比,DV-2,DV-3在开裂时的等效黏滞阻尼系数分别提高8.2%和9.4%,耗能力提升幅度较小。

(2) 从开裂阶段至试件破坏阶段,各试件等效 黏滞阻尼系数有不同程度的增大,表明试件耗能能 力逐渐增加。与DV-1相比,DV-2,DV-3在屈服点 的等效黏滞阻尼系数分别提高 37.1% 和 34.8%;峰 值点处等效黏滞阻尼系数分别提高 44.2% 和 46.3%,提升幅度较为显著。

(3)设置黏滞阻尼器的试件在各特征点耗能能 力均大于对比试件,尤其是在峰值及破坏点,说明设 置黏滞阻尼器对仿古建筑双枋-柱节点的耗能性能 有较大的提升。各试件破坏时的功比系数均较大, 与DV-1相比,DV-2,DV-3功比系数分别提升9.5% 和16.8%,并高于普通混凝土结构的耗能性能^[15-16], 黏滞阻尼器可大幅度提升试件的整体抗震性能及力 学性能。

为进一步分析各试件加载全过程中的耗能能 力,计算各试件每个工况下第1,3,5循环时滞回环 所围成的面积,如图15所示。定义每个工况下第1, 3,5循环时滞回环所围成的面积与其第1圈循环时 面积的比值为耗能能力降低系数η,其变化趋势如 图16所示。对比分析图15和16可知:

(1)加载初期,即工况1~工况4,各试件滞回耗 能较低;随着控制位移的增大,试件进入到大变形阶 段,耗能能力提高。

(2) 与试件 DV-1 相比,试件 DV-2 及 DV-3 在 每工况下的滞回耗能均大于 DV-1,表明在合适位置 设置阻尼器对仿古建筑耗能能力有较大程度的 提升。

(3)如图16示,随着循环次数的增加,滞回环包 围的面积逐渐降低,以试件DV-3工况6为例,第3 和第5圈滞回环形成的面积分别占第1圈滞回环形 成的面积的79.4%和68.5%,表明随着控制位移的 增大,试件耗能能力逐渐衰减。

Fig. 16 Decreasing coefficients of total energy consumption of each specimen under the test loading cases

3.6 刚度分析

刚度退化是指试件在往复加载过程中,保持控

制位移不变而刚度随着循环次数的增加而降低的现

象,一般采用割线刚度表示。

计算各试件每个工况下第1,3,5循环时的割线 刚度,结果如图17示,图18给出了各试件在位移循 环阶段每个工况下正反向加载时第1圈循环时刚度 随控制位移的变化情况。对比分析图17和18可知:

(1)总体上,各试件刚度呈现逐渐降低的趋势。 一方面,在控制位移不变时,各试件刚度随着循环次数的增加而逐渐减小,图17中,与每个工况第1圈循环时刚度相比,第3圈和第5圈的刚度有较大幅度降低,而第3圈刚度与第5圈相比,降低幅度较小;另一方面,随着控制位移的增加,各试件刚度逐渐降低,加载初期,试件刚度退化较快,后期退化逐渐减缓, 图17中各试件刚度变化曲线在加载后期的斜率较小,这是由于加载后期试件在快速往复作用下破坏较为严重,几乎不再有进一步的损伤累积,试件的刚度不再有较大幅度的降低。

(2)设置黏滞阻尼器试件的刚度退化呈现先快 后慢的趋势,而对比试件 DV-1的刚度退化曲线基 本呈线性关系,即图 17 中红色虚线,由此表明,在加 载初期,试件的刚度退化基本相同,黏滞阻尼器对试 件在较小变形时影响甚微,随着控制位移加大,黏滞 阻尼器逐渐体现其功效,与试件协同受力,可在一定 程度上延缓试件的刚度退化,使试件刚度退化保持 在一个较为平缓的状态,由此说明通过设置黏滞阻 尼器可显著改善仿古建筑的刚度退化速率,有效提 高试件在破坏阶段的刚度,提高结构的抗倒塌能力。

3.7 承载力衰减分析

定义试件承载力降低系数 λ 为试件在每个工况 下最后一圈循环时峰值荷载与第一圈循环时峰值荷 载的比值。各试件正反向加载时的承载力降低系数 如图 19 所示。

(1)各试件承载力随着控制位移的增加呈逐渐降低的变化趋势,且控制位移越大,试件承载力降低 越严重。以DV-3为例,工况12时的强度为试件初 始强度的78.2%,表明试件在破坏阶段损伤累积逐 渐增大,抵抗外界作用的能力逐渐降低。

(2)与试件 DV-1 相比,加载后期,设置阻尼器 后的试件承载力降低系数均小于前者,在工况9及 工况10时,试件 DV-2的承载力降低系数平均值分 别为85.2%,83.56%;试件 DV-3的承载力降低系数 平均值分别为82.0%,81.5%;试件 DV-1的对应数 值分别为82.0%,77.6%,表明通过设置阻尼器可减 缓试件承载力的衰减。

4 结论与建议

4.1 结论

(1)采用钢-混凝土组合结构可显著提升仿古 建筑双枋-柱组合件的力学性能,有效地减小了上柱 的轴压比。

(2)设置黏滞阻尼器后仿古建筑承载力有较大 程度提升,滞回曲线更为饱满,变形能力及耗能能力 显著增加,刚度及强度衰减得到一定程度的抑制。 因此实际工程中,可通过合理设置黏滞阻尼器改善 仿古建筑节点的抗震性能。

4.2 设计建议

(1)实际工程中由于仿古建筑柱多为变截面, 为降低上柱轴压比,可采用钢-混凝土组合结构,防 止高轴压比下试件的剪切破坏。

(2)选用黏滞阻尼器前,应根据工程特点进行 相关理论分析及数值模拟优化,确定合适的黏滞阻 尼器设计参数。

参考文献:

- [1] 梁思成.我國偉大的建築傳統與遺産[J].文物参考资料,1951(2):6-19.
- [2] 梁思成.为什么研究中国建筑[J].建筑学史学刊, 2021,2(1):178.
- [3] 薛建阳,翟磊,马林林,等.钢结构仿古建筑带斗栱檐柱 抗震性能试验研究及有限元分析[J].土木工程学报, 2016,49(7):57-67.

Xue Jianyang, Zhai Lei, Ma Linlin, et al. Experimental study and numerical analysis on seismic behavior of steel eave columns with Dougong in imitated ancient building[J]. China Civil Engineering Journal, 2016, 49 (7): 57-67.

[4] 薛建阳,吴占景,隋奠,等.传统风格建筑钢结构双梁-柱中节点抗震性能试验研究及有限元分析[J].工程力 学,2016,33(5):97-105.

Xue Jianyang, Wu Zhanjing, Sui Yan, et al. Experimental study and numerical analysis on aseismic performance of steel double-beams-column interior-joints in traditional style building[J]. Engineering Mechanics, 2016, 33(5): 97-105.

[5] 薛建阳,董金爽,隋龑,等.附设黏滞阻尼器的仿古建筑 混凝土枋-柱节点动力性能试验研究[J].振动与冲击, 2017,36(17):211-219.

Xue Jianyang, Dong Jinshuang, Sui Yan, et al. Experi-

mental research on dynamic performance of concrete lintel-column joint with viscous damper in archaized buildings[J]. Journal of Vibration and Shock, 2017, 36 (17): 211-219.

- [6] Xue J Y, Dong J S, Sui Yan. Dynamic behaviors of viscous damper on concrete archaized building with lintel-column joint[J]. Earthquake and Structures, 2017, 13 (4): 409-419.
- [7] 隋龑,薛建阳,董金爽,等.附设粘滞阻尼器的混凝土仿 古建筑梁-柱节点恢复力模型试验研究[J].工程力学, 2019,36(增刊1):44-53.
 Sui Yan, Xue Jianyang, Dong Jinshuang, et al. The experimental research on the restoring force model of lintel-column joints of concrete archaizing buildings with viscous dampers[J]. Engineering Mechanics, 2019, 36 (Sup1): 44-53.
- [8] 隋龑,薛建阳,吴占景,等.钢结构仿古建筑阻尼节点动 力加载试验及有限元分析[J].建筑结构学报,2018, 39(6):110-118.

Sui Yan, Xue Jianyang, Wu Zhanjing, et al. Dynamic loading test and numerical analysis of steel beam-column joint in traditional style buildings[J]. Journal of Building Structures, 2018, 39(6): 110-118.

[9] 隋龑,薛建阳,董金爽,等.附设黏滞阻尼器的传统风格 建筑混凝土梁柱组合件力学行为分析[J].工业建筑, 2017,47(10):45-51.

Sui Yan, Xue Jianyang, Dong Jinshuang, et al. Research on mechanical behavior of concrete beam-column subassemblages in traditional style buildings with viscous damper[J]. Industrial Construction, 2017, 47 (10): 45-51.

 [10] 谢启芳,李朋,葛鸿鹏,等.传统风格钢筋混凝土梁-柱 节点抗震性能试验研究[J].世界地震工程,2015,31
 (4):150-158.

Xie Qifang, Li Peng, Ge Hongpeng, et al. Experimental study on seismic behavior of RC column-beam joint built in traditional style[J]. World Earthquake Engineering, 2015, 31(4): 150-158.

[11] 谢启芳,李朋,王龙,等.传统风格钢筋混凝土梁-柱节 点抗剪机理分析与抗剪承载力计算[J].建筑结构, 2014,44(19):81-86.

Xie Qifang, Li Peng, Wang Long, et al. Shear mechanism analysis and shear capacity calculation of the RC column-beam joint built in traditional style[J]. Building Structure, 2014, 44(19): 81-86.

- [12] 梁思成.中国古建筑典范《营造法式》注释[M].香港: 香港三联书店,2015.
- [13] 国家市场监督管理总局,国家标准化管理委员会.中国 地震烈度表:GB/T 17742-2020[S].2020.

State Administration for Market Regulation, Standardization Administration. The Chinese seismic intensity scale: GB/T 17742—2020[S]: 2020.

- [14] Gosain N K, Brown R H, Jirsa J O. Shear requirements for load reversals on RC members[J]. Journal of the Structural Division, 1977, 103(7): 1461-1476.
- [15] Sivaselvan M V, Reinhorn A M. Hysteretic models for deteriorating inelastic structures[J]. Journal of Engineering Mechanics, 2000, 126(6): 633-640.
- [16] Song J K, Pincheira J. Spectral displacement demands of stiffness-and strength-degrading systems [J]. Earthquake Spectra, 2000, 16(4): 817-851.

Mechanical properties on antique buildings dual-lintel-column subassemblages under fast harmonic load

DONG Jin-shuang^{1,2}, GONG Yan-ru¹, SUI Yan², ZHAI Lei², HUANG Bin¹
(1.College of Civil Engineering and Architecture, Hainan University, Haikou 570228, China;
2.School of Civil Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China)

Abstract: In order to study the failure characteristics and mechanical behavior of antique buildings dual-lintel-column subassemblages, typical archaize building dual-lintel-column subassemblages were selected as the model structure, and the specimens adopted the steel-concrete composite structure and viscous dampers are set at the connection. Total 3 specimens were designed and tested under fast harmonic load, including two specimens with viscous damper and one specimens without viscous damper. On the basis of experimental study, the key indexes of mechanical properties are analyzed, such as the load-displacement hysteretic curve of specimens and viscous damper, the skeleton curve, load-bearing capacity and deformation performance, stiffness and strength degradation. The results indicate that the mechanical properties of antique buildings dual-lintel-column subassemblages with steel and composite structures and viscous damper can significantly increase the mechanical properties, and the hysteretic curve of the damping joint is plump. The descending phase of skeleton curves is smoother, and the deformation capacity has been significantly improved. The carrying capacity is increased by $13.9\% \sim 14.1\%$, and Displacement ductility is increased by $13.0\% \sim 18.6\%$. The viscous damper and the dual-lintel-column subassemblages can work together, which can significantly improve the deformation performance of the structure at the failure stage and enhance the collapse resistance of the structure.

Key words: antique buildings;dual-lintel-column subassemblages;harmonic load;mechanical properties

作者简介:董金爽(1989一),男,博士,讲师。电话:13398906817; E-mail: mlcxll@163.com。