主动电磁轴承-柔性转子系统的不同位效应

李翁衡,祝长生

(浙江大学电气工程学院,浙江杭州 310027)

摘要:在电磁轴承支承的柔性转子系统中,由于结构的限制,位移传感器无法安装在电磁轴承的中心位置,因而产 生了传感器中心位置与电磁轴承中心位置的不同位问题。电磁轴承和位移传感器的不同位不仅会影响转子系统的 振动控制性能,还会导致控制系统失稳。应用有限元法建立了电磁轴承-柔性转子系统的动力学模型;从转子系统 动力学特性、开环传递函数的零极点、频率响应曲线以及根轨迹等四个角度分析了不同位对电磁轴承-柔性转子系 统动力学特性的影响;用多输入多输出的状态方程确定了不稳定模态特征值的具体位置,提出了减小控制器增益和 插入式自适应陷波器等抑制不稳定弯曲模态的方法;在电磁轴承-柔性转子试验台上进行了试验。仿真和试验结果 表明:不同位效应会通过影响模态信号的衰减而影响转子系统的稳定性,所提出的方法可在一定程度上抑制不同位 导致的弯曲模态的不稳定。

关键词:转子动力学;主动电磁轴承;柔性转子;不同位;稳定性

中图分类号:O347.6;TH133.3 **文献标志码:**A **文章编号:**1004-4523(2023)05-1179-12 DOI:10.16385/j.cnki.issn.1004-4523.2023.05.001

引 言

主动电磁轴承(Active Magnetic Bearing, AMB), 简称为电磁轴承,是一种旋转机械转子新型的支承 结构,通过可控的电磁力使转子稳定悬浮,具有无接 触、无摩擦、无磨损、能在真空和高低温等特殊环境 下应用等特点。得益于这些优点,电磁轴承被广泛 应用于高速电机、压缩机、涡轮分子泵和飞轮储能等 系统中^[1-2]。由于受到转子材料机械强度的限制,为 了满足设备高效率、高能量密度的要求,各类高速旋 转机械的转子逐渐向更细、更长、转速更高的方向发 展,这将导致转子运行在系统一阶或更高阶的弯曲 临界转速之上。其中,工作转速超过其一阶弯曲临 界转速的转子称之为柔性转子。

转子系统,无论采用何种传感器,由于结构及电 磁兼容性的限制,都难以将传感器直接安装在AMB 内部,因而产生了传感器中心的轴向位置与电磁轴 承中心的轴向位置的不同位问题,这类系统被称为 不同位系统。对于刚性系统,转子为刚体,利用简单 的几何关系就能够从传感器位置测量到的转子振动 信息中得到AMB中心位置转子的振动信息。但对 于柔性转子系统,由于转子振型的时变性,不可能通 过简单的几何关系就从传感器位置测量到的转子振 动信息中得到电磁轴承中心位置转子的振动信息。 所以电磁轴承-柔性转子系统的不同位,不仅会影响 转子系统的振动控制性能,还会影响控制系统的稳 定性。

实际上,不同位现象在物理系统中广泛存在,早 期一些学者对不同位结构的本质特征做了研究。 Spector 等^[3]研究了不同位结构模型的敏感性,他们 发现系统中的零点对系统参数和边界条件的扰动比 极点更为敏感。此外,传感器位置的微小变化可能 导致零点和极点的顺序互换,从而使系统出现不稳 定。Miu^[4]对零点的物理含义做了研究,阐述了零点 在确保控制系统稳定性方面的重要性,发现对于柔 性结构,不同位系统的低阶模态由于相位相同,系统 有交变的零极点对,但是其高阶模态可能出现不同 相位,不一定有交变的零极点对。极点是系统的谐 振频率,因此从稳定的角度看,同位系统的零点是非 常重要的。从物理上看,当系统输出为零时,外部的 能量被完全吸收并"困"在子结构的"内部储能元件" 中,输出端检测不到位移,所以零点是这些子结构的 谐振。

20世纪90年代,许多学者对AMB系统的不同 位进行了研究。Maslen等^[5]在传递矩阵法的基础上 研究了一种将AMB结合到柔性转子离散模型中的 直接方法,该方法能设置传感器-执行器的不同位,

收稿日期: 2022-02-10; 修订日期: 2022-03-29

基金项目:国家科技重大专项资助项目(J2019-IV-0005-0073);基础科研计划资助项目(2019110C026)。

所建的模型能方便地使用其他工具进行稳定性分 析。Ramesh等^[6]指出用有限元法建立转子系统的 模型可以方便地处理传感器的不同位问题,研究发 现传感器从外侧向内侧移动时,第一阶临界频率增 加,第三阶临界频率降低,同时第一阶临界处的振幅 减小,第三阶临界处的振幅增加。Lefante^[7]深入研 究了柔性转子的不同位,用零极点交错和自由振型 等开环特征来预测闭环系统的稳定性。首先,对于 某阶模态,在无阻尼模态振型中若传感器位置的位 移出现反相,此时闭环系统的对数衰减率也发生变 化,由此得到了无阻尼振型与闭环系统稳定性的关 系。然后,他指出零极点交错的系统可在任一补偿 角度范围为0°~180°的相位补偿器的作用下达到稳 定。但与同位系统不同,相位补偿器不能在不同位 系统中提供无条件的稳定性。Obrzut^[8]深入研究了 不同位系统的动力学特性,发现如果把零点定义为 反谐振频率,那么同位系统的反谐振频率在两个连 续的反谐振频率之间,相位在0°~180°之间变化;不 同位系统在两个谐振频率之间没有反谐振。虽然不 同位系统每个谐振频率仍然有180°滞后,但没有因 反谐振带来的180°超前,所以在第二次共振位置处 会出现-270°的滞后现象。从增益根轨迹图发现, 一旦不同位系统缺少反谐振,很小的增益就可能导 致控制系统发散。此外,他还发现不同位系统会影 响峰值位置,对临界转速也有影响。但是,这些工作 中没有解释,对于一个柔性转子而言,只要是不同位 系统就会有无穷多的不稳定模态,这会造成不同位 系统就是不稳定的假象,而实际上AMB-柔性转子 试验系统仍然是可以运行的。

从物理上调整传感器的位置能减缓不同位效应 对转子特性的影响,满足转子正常运行的需求。 Štimac 等^[9]发现不同位效应影响到转子系统的第二 阶弯曲模态,通过改变传感器的位置虽然可以解决 二阶弯曲模态的问题,但不同位效应仍然影响着更 高阶模态的特性。Schuhmann等^[10]提出了一种避免 不同位问题的方法,即将电容传感器直接集成到径 向磁轴承的定子铁芯中,利用卡尔曼滤波器来降低 轴承线圈对传感器的噪声影响。Yu等[11]研究了自 传感技术,通过利用开关放大器的高频电流纹波进 行调幅来估计转子位移,减少了元件数量。但工程 应用上最成熟的仍是电涡流位移传感器。另外,也 有不少学者试图从控制角度通过转子数学模型来解 决不同位问题。Wang等[12]考虑了不同位效应,提 出一种模态分离策略,结合相位补偿器补偿不同位 的影响。Geng等^[13]基于状态观测器的位移重构方 法,结合相位补偿器,有效消除了电磁轴承-柔性转 子系统的不同位问题,抑制了转子在跨越弯曲临界

转速区的振动。这些研究均基于转子精确的动力学 模型,并未能进行试验研究。在试验中仍缺少简单 有效的方法来抑制不同位效应造成的发散,因此需 要对这些抑制方法进行系统地论述。

本文首先建立了AMB-柔性转子系统的动力学 模型;然后从转子动力学特性、开环传递函数的零极 点、频率响应曲线以及闭环系统根轨迹等四个角度 分析了AMB-柔性转子系统不同位对系统特性,特 别是对系统稳定性的影响,提出了调节增益和插入 式自适应陷波器等抑制由不同位导致不可控弯曲模 态发散的方法;最后在试验台上进行了不同位条件 下转子的悬浮、扫频、不平衡激励和旋转试验,对理 论分析结论进行了试验验证。

1 AMB-柔性转子系统动力学模型

对于图1所示的任意一个带有多个刚性圆盘的 AMB-柔性转子系统,质量和刚度沿轴向是变化的, 对这样的系统进行动力学分析,需要求解关于时间 和空间的偏微分方程,因此通常采用离散化的方法 进行建模。在转子上设*n*个节点,将AMB的电磁力 作为广义外力来看待,认为AMB的电磁力是转子 在AMB节点所受的外力,只需将其叠加到AMB位 置转子节点广义力向量的对应位置处即可。

用轴单元模型可以得到AMB-柔性转子系统的 动力学方程为^[14]:

 $M\ddot{q} + (D + \Omega G)\dot{q} + Kq = F_{mag} + G_m + F_u$ (1) 式中 $M, D, G \pi K \beta H h \times 4n$ 维质量矩阵、阻 尼矩阵、陀螺矩阵和刚度矩阵; Ω 为转速; F_{mag} 为 $4n \times 1$ 维 AMB 电磁力向量; F_u 为 $4n \times 1$ 维不平衡力 向量; G_m 为 $4n \times 1$ 维重力向量; q 为广义位移向量; \dot{q} 为广义位移的一阶导数; \ddot{q} 为广义位移的二阶 导数。

AMB的电磁力是线圈电流i和位移q的非线性 函数。在工作点(q_0 , i_0)附近进行线性展开,得到 AMB电磁力的线性化表达式为:

 $F_{mag} = F_{mag,0} + K_i(i - i_0) + K_x(q - q_0) \quad (2)$ 式中 F_{mag,0}为静态悬浮工作点(q_0, i_0)的电磁力, 一 单

般情况下, $F_{mag,0}$ 刚好与系统的重力向量 G_m 平衡;i为 控制电流向量; K_i 为AMB的电流刚度系数矩阵; K_x 为AMB的位移刚度系数矩阵。

由于AMB在*x*和*y*两个方向上是耦合的,所以 AMB-柔性转子系统是一个多输入多输出系统。为 了利用多输入多输出系统的相关分析方法,可以将 AMB-柔性转子系统的动力学方程(1)用状态空间 方程表述为^[14]:

$$\begin{cases} \dot{x} = Ax + Bu + B_{u}F_{u} \\ y = C_{m}x \end{cases}$$
(3)

式 中

A =

$$\begin{bmatrix} -M^{-1}(K-K_x) & -M^{-1}(D+\Omega G) \\ B = \begin{bmatrix} 0 \\ M^{-1}T_s^{\mathrm{T}}K_i \end{bmatrix}, B_{\mathrm{u}} = \begin{bmatrix} 0 \\ M^{-1} \end{bmatrix}, x = \begin{bmatrix} q \\ \dot{q} \end{bmatrix}, \sharp \oplus, \mathrm{I} \not \gg$$

位矩阵;T_s为AMB位置矩阵。*x*为状态变量*x*的导数;*u*为控制器输出;*y*为传感器位移输出;*C*_m为传感器输出矩阵。

当AMB-柔性转子系统的节点较多时,全阶模型的计算量很大。实际的AMB-柔性转子系统只需考虑较低阶模态的动力学特性,因此需要对AMB-柔性转子系统的动力学模型进行降阶处理。

应用模态截断方法^[14],如果只考虑转子的前r 阶模态,存在模态转换矩阵T_m,使模态空间状态量 q_R转换成转子位移状态量q:

$$q = T_{\rm m} q_{\rm R} \tag{4}$$

式中 T_m 为模态转换矩阵, $T_m = \begin{bmatrix} \phi_1 & \phi_2 & \cdots & \phi_j \end{bmatrix}$, 其中, ϕ_j 为转子系统的特征向量, $j=1,2,\cdots,r_o$

值得注意的是,模态截断方法的目的是减少计 算量。模型的节点越多,保留的模态越多,转子的动 力学特性就越复杂,但也就越接近实际的转子系统。

2 不同位效应

电涡流传感器及电感传感器是AMB系统中最 常用的转子位移传感器。由于传感器结构和电磁兼 容性的限制,转子位移传感器一般只能安装在AMB 的附近,由此产生了所谓的AMB的中心位置和位 移传感器的中心位置不重合的不同位效应,使得转 子位移传感器的测量不能正确反映出AMB处转子 的位移,给系统的稳定性带来影响。

对于柔性转子而言,转子的弯曲状态随转速等 参数发生变化,因此无法简单地从传感器处转子的 振动推算出AMB处转子的振动。在振型较为简单 的低阶柔性模态情况下,与AMB处转子的真实位 移相比,不同位的信号表现为幅值有差,相位滞后的 特征。若把振型复杂的高阶柔性模态考虑在内,如 果有某一些模态振型的节点位于AMB和位移传感器中间,当转子在对应的模态频率处以这样的模态 振型振动,传感器处位移与AMB处位移的相位相 差180°,使得模态频率信号不能有效地衰减,对系统 稳定造成隐患。

以下的数值和仿真分析是基于图2所示的 AMB-柔性转子模型进行的,它由1根均质轴、2个 刚性圆盘及2个AMB轴颈组成,转子在径向上由2 个AMB支承。AMB的相关参数如表1所示。

图 2 柔性转子基本结构及尺寸(单位:mm)

Fig. 2 Basic construction and size of flexible rotor (Unit: mm)

表 1 AMB基本参数 Tab. 1 Basic parameters of AMB

参数	数值
转子质量/kg	16.8
电磁轴承极数	8
电磁轴承气隙/mm	0.5
保护轴承气隙/mm	0.2
电流刚度系数/(N·A ⁻¹)	129
位移刚度系数/(N·m ⁻¹)	2.9×10^{5}
设计最高转速/(r•min ⁻¹)	15000

下面从转子动力学特性、开环传递函数的零极 点、频率响应曲线以及根轨迹四个方面来具体分析 传感器与AMB不同位对系统特性的影响。

2.1 转子系统的动力学特性

基于有限元法分析转子振型可以得到转子每一 阶模态的节点信息。本文研究的柔性转子在静止悬 浮的前5阶弯曲模态振型如图3所示。从各阶模态 的振型图中可以看出,第五阶模态(三阶弯曲模态) 和更高阶弯曲模态在传感器节点和AMB节点之间 存在模态振型与转轴中心线的交点(即模态节点)。 柔性转子在0~15000 r/min(250 Hz)转速范围内, 两端模态节点的变化如图4所示。图4的结果表明, 在整个转速范围内,该三阶模态节点一直存在于传 感器和AMB之间,若该模态被外部激励激起,在传 感器节点处检测到的模态频率分量与AMB节点处 的分量方向相反。

Fig. 3 The first to five-order bending mode shape of flexible rotor

弯曲模态信号的衰减有两种方式:一为闭环增益小于1;二为控制器提供正确的反向控制且相位超前。第一种方式主要是因为二阶物理系统固有的信号衰减效应,是高阶模态一般不容易激起的原因。同位系统中不存在不稳定模态,因为在同位系统中, PID 在整个控制器带宽内都能使 AMB 提供类似机械轴承的正刚度和正阻尼;而在不同位系统中,则需考察弯曲模态信号的衰减条件是否满足。

基于图2的转子在Simulink平台建立了AMB-柔 性转子系统状态方程模型(式(3))进行研究,电磁力 采用式(2)的线性化模型。

首先,分别向同位和不同位系统的AMB的一 个通道注入0~1000 Hz的扫频电流,对扫频过程中 转子对应通道的位移应用短时傅里叶变换进行时 间-频域分析,提取其中逐渐发散的频率分量,其结 果如图5和6所示。

通过对比图 5 和 6 可以看出, 扫频电流依次激起 各阶弯曲模态信号。一段时间后, 同位系统的模态 信号均能衰减, 而不同位系统的三阶弯曲模态信号 被激起后呈发散趋势。四阶和五阶弯曲模态虽然也 受不同位效应影响, 但因其频率高, 闭环回路增益 小, 因此信号激起后逐渐衰减。因此, 所研究转子的 第三阶弯曲模态受到不同位效应影响最大, 对系统 稳定性影响也最大。

然后,进行恒速旋转仿真,对失稳过程中转子的位 移进行时间-频域分析,其结果如图7所示。在静态悬浮 时,不稳定频率分量为380Hz;在转速为100Hz时,不稳 定频率分量约为340Hz;在转速为150Hz时,不稳定频 率分量约为310Hz。值得注意的是,虽然该柔性转子的 转速较低,并没有跨越到第三阶临界转速,但低阶模态 信号在仿真开始或起浮瞬间仍然能被激起。不受不同 位影响的低阶模态(一阶、二阶弯曲)在PID的控制下迅 速衰减,而三阶弯曲模态因不满足衰减条件而发散。

基于 AMB-柔性转子系统的动力学模型,可以 计算得到转子系统在不同转速下考虑陀螺效应时的 各阶正向及反向涡动频率^[15],如表2所示。

表 2 柔性转子系统不同工作转速下的正、反向涡动频率 (单位:Hz)

Tab. 2 The positive and negative vorticity frequencies of flexible rotor system at different working rotational speeds (Unit:Hz)

模态阶次	- 44 月.	6000 r/min		9000 r/min	
	閉⊥⊥	正向	反向	正向	反向
一阶	72	81	65	86	62
二阶	148	156	139	161	135
三阶	387	447	334	480	311
四阶	510	561	465	590	445
五阶	688	733	649	758	631

一般来说,除了转子与定子间的碰摩会引发转 子的反向涡动外,不平衡激励不会激发转子系统的 反向涡动。将表2中柔性转子系统在不同工作转速 下的正反向涡动频率与图4中对失稳过程中转子的 位移时间-频域分析提取出的不稳定频率进行对比 可以发现,不同转速下的两个不稳定的频率分量刚 好等于转子的第三阶弯曲反向涡动频率。因此,存 在不满足衰减条件的不同位弯曲模态时,转子激发 出对应模态下的反向涡动信号。

2.2 转子系统开环传递函数的零极点

根据AMB-柔性转子系统的动力学模型可以得 到从电磁力输入到传感器位移输出的开环传递函 数为:

 $G_{sa}(s) = C_{m} \cdot [Ms^{2} + (D + \Omega G)s + K]^{-1} \cdot T_{s}^{T} (5)$ 式中 s为拉普拉斯算子。

根据Cramer法则,式(5)可写成:

$$G_{sa}(s) = \frac{C_{m} \cdot \operatorname{adj}[Ms^{2} + (D + \Omega G)s + K] \cdot T_{s}^{T}}{\operatorname{det}[Ms^{2} + (D + \Omega G)s + K]}$$
(6)

那么开环传递函数的极点与零点分别为:

 $\det \left[Ms^2 + (D + \Omega G)s + K \right] = 0 \qquad (7)$

 $C_{\rm m} \cdot \operatorname{adj}[Ms^2 + (D + \Omega G)s + K] \cdot T_{\rm s}^{\rm T} = 0 \quad (8)$

可见,转子系统的极点由质量、阻尼、陀螺矩阵、 刚度等转子自身的动力学特性决定,与传感器位置 无关。转子系统的零点不仅与转子自身动力学特性 相关,还与AMB的位置(*T*_s矩阵)和传感器的位置 (*C*_m矩阵)有关。与同位系统相比,不同位系统仅改 变了开环传递函数的零点位置和增益,不会影响系 统极点的位置。

为了研究传感器位置对转子开环传递函数的零极点的影响,先不考虑陀螺效应,将传感器位置按图 8所示的方式,从两边逐渐向中间移动,其中,第④ 种情况为同位系统情形。转子从电磁力输入到传感 器位移输出的开环传递函数的零极点图如图9 所示。

图 9 不考虑陀螺效应时传感器不同位置下转子系统的 零极点分布

Fig. 9 The zeros and poles distribution of the rotor system at different positions of sensors without considering gyro effect

图 9 中的叉代表极点,圆圈代表零点。转子的 零极点图关于实轴对称,因此只列出零极点图中的 正虚轴部分。对于每一张图,从下到上共有4个极 点和4个零点,对应着一到四阶弯曲模态的频率。

由图9可知,当传感器位置变化时,转子开环传 递函数的极点位置始终不变,而零点位置改变。同 位系统(序号④)传递函数的零极点交错出现,即零 点-极点-零点-极点。而不同位系统(序号①~③和 ⑤~⑦)中,这种交错现象就被打乱。当某阶弯曲模 态的节点位于位移传感器节点与AMB节点中间时 (称为"跨节点"),该模态对应的零点就会跨越到极 点的另一边。如序号为①~③的三种情况,对应第 三、四阶弯曲模态(跨节点)的零点转移到极点上方, 与第一、二阶弯曲模态(不跨节点)的零点在极点下 方恰好相反。

当考虑陀螺效应时,设定转速为6000 r/min,传 感器和AMB位置变化时对转子零极点的影响如图 10所示。由于陀螺效应的影响,虽然转子的各阶固 有频率分化成前向涡动和反向涡动两个频率,转子 每一阶均具有两对零极点。但不难发现,转子系统 的零点移动方向与极点的相对位置均具有与不考虑 陀螺效应影响时传感器不同位置下转子系统的零极 点分布相同的规律。

2.3 转子系统开环传递函数的频率响应曲线

以电磁力为输入,位移为输出得到转子系统开 环传递函数的响应伯德图如图11所示。开环传递 函数幅频响应曲线上的峰和谷分别对应传递函数的 极点和零点,极点表示转子的固有频率,零点表示传 感器检测到的位移为0时所对应的频率,即转子振 型刚好位于传感器位置时所对应的频率。

对图11进行分析可得到如下结论:

(1)从固有频率处的峰-谷顺序来看,不同位系统中不跨节点的模态与同位系统相同,都是先出现谷,再出现峰,对应于先零点后极点的顺序;而不同位系统中跨节点的模态由于零极点相对位置相反,所以出现了先峰后谷的顺序。

(2)从临界区的相位上看,不同位系统中不跨节 点的模态与同位系统相同,在幅频尖峰下降后迅速 降为0,而跨节点模态没有上升过程,与同位信号保 持有180°相位差,直至临界区结束。

因此,AMB-柔性转子系统开环传递函数频率 响应曲线上先极点后零点的错位使得跨节点的相位 在临界区有180°相位差。当转子振动时,对应的模 态频率信号与传感器测得的转子位移信号刚好相

Fig. 11 Open loop frequency response curves of the rotor system

反,这是不同位效应产生特殊相位行为的根源。

(3)从AMB-柔性转子系统整个开环传递函数 幅频响应曲线来看,不同位系统的增益比同位系统 更高,在尖峰处幅值更大。图12为单通道注入电流 激励的情况下,不同位效应导致转子系统位移信号 发散过程中,传感器节点和AMB节点输出的时 间-频域图像。与AMB节点对比,传感器节点(不同 位信号)具有更多的高阶模态分量。

图 12 不同位效应导致系统振动位移发散过程中的时间-频域图像

Fig. 12 Time-frequency image of divergent process of system vibration displacement caused by non-collocated effect

2.4 不同位系统状态方程分析

AMB-柔性转子系统动力学方程的状态空间方

程为:

$$\begin{cases} \dot{x} = A_{\rm m} x + B_{\rm m} u + B_{\rm um} F_{\rm um} \\ y = C_{\rm mm} x \end{cases}$$
(9)

式中 A_m为模型降阶后的系统特征矩阵;B_m为输入 矩阵;B_{um}为不平衡力输入矩阵;C_{mm}为位移传感器输 出矩阵;F_{um}为降阶系统的不平衡力矩阵。

设分散 PID 控制器的传递函数为:

$$G_{\rm c}(s) = K_{\rm p} + \frac{K_{ir}}{s} + \frac{K_{\rm d}s}{T_is + 1}$$
(10)

式中 K_p 为比例系数; K_i 为积分系数; K_d 为微分系数; T_i 为微分时间常数。

将单通道分散 PID 控制器的传递函数改写为状态空间方程的形式:

$$\begin{cases} \dot{x}_{ci} = A_{ci} x_{ci} + B_{ci} u_{ci} \\ y_{ci} = C_{ci} x_{ci} + D_{ci} u_{ci} \end{cases}$$
(11)

式中
$$A_{ci} = \begin{bmatrix} 0 & 1 \\ 0 & -\frac{1}{T_i} \end{bmatrix}, B_{ci} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, D_{ci} = \begin{bmatrix} K_d + K_p T_i \\ T_i \end{bmatrix}$$

 $C_{ci} = \left[\frac{K_{ir}}{T_{i}} \quad \frac{K_{p} + K_{ir}T_{i}}{T_{i}} - \frac{K_{d} + K_{p}T_{i}}{T_{i}^{2}}\right], i = 1, 2, 3, 4;$

 x_{ci} 为状态变量; u_{ci} 为PID控制器的输入。

转子系统的输出 y为 PID 的输入 u。项,输出 y。 为转子系统的输入 u项,合并四个通道的 PID 方程, 化简得到闭环系统的特征矩阵为:

$$G = \begin{bmatrix} A_{\rm m} - B_{\rm m} D_{\rm c} C_{\rm mm} & B_{\rm m} C_{\rm c} \\ -B_{\rm m} C_{\rm mm} & A_{\rm c} \end{bmatrix}$$
(12)

 $\vec{x} \oplus A_{c} = \operatorname{diag}[A_{c1}, A_{c2}, A_{c3}, A_{c4}], C_{c} = \operatorname{diag}[C_{c1}, C_{c2}, C_{c3}, C_{c4}], D_{c} = \operatorname{diag}[D_{c1}, D_{c2}, D_{c3}, D_{c4}]_{o}$

该闭环系统状态方程包括了四路分散 PID 控制 和完整的转子系统,属于多输入多输出系统分析,相 比于传统简化成单路的单输入单输出传递函数分 析,其充分考虑了转子系统*x*和*y*方向的耦合作用, 更能反映出闭环系统的特性。

本文采用分次截断的方法分辨出各阶模态对应 的特征值。闭环系统特征值的运动轨迹如图13所 示,符号曲线的颜色从浅到深表示转速从低到高。 同位系统的前五阶特征值轨迹在左半平面,说明对 于同位系统而言,简单的PID控制就可以稳定系统 的各阶弯曲模态。但非同位系统的第三阶和更高阶 弯曲模态的特征值全部位于右半平面,处于不稳定 状态,当这些不稳定模态信号的闭环增益大于1时 会影响系统的稳定性。

3 不同位效应的抑制

为了稳定不同位系统,应抑制控制器对相关模态分量的增益,这通常有微分滤波、减小微分系数和

低通滤波三种方法。

3.1 微分滤波

重写PID中的微分环节的传递函数为:

$$P_{\rm d}(s) = K_{\rm d} s \frac{N}{s+N} \tag{13}$$

式中 N为滤波系数,与前述微分时间常数互为倒数对应。

在一般 PID 控制器的设计中,为了得到理想的 微分信号,通常将 N取得很大,得到的 PID 控制器在 相当高频率时都有增益。为了抑制因高频增益过大 导致的不同位系统的不稳定,应采取减小 N的策略。

不同滤波系数N条件下PID控制器的伯德图如 图 14 所示。N越小,PID控制器对高频增益越低,但 同时相位超前量小会引发阻尼不足的问题,特别是 在跨越临界转速区时,若阻尼不足会引起强烈的 共振。

Fig. 14 Bode plot of PID controller under different filter coefficients N

图 15 为 0~250 Hz 运行区间,不同滤波系数 N 的闭环系统特征值的运动轨迹。由图 15 可见,滤波 系数 N 取较小值能让位于右半平面的不稳定特征 值向虚轴方向移动,等效于减小了这些不稳定模态

图 15 不同滤波系数N的闭环系统特征值运动轨迹 Fig. 15 The motion trail of eigenvalue of closed-loop system under different filter coefficients N

的增益。但与此同时位于左半平面的稳定特征值也 向虚轴移动,即削弱了这些模态的控制信号,造成稳 定过渡过程变长。

3.2 减小增益系数

比例系数 K_p影响 PID 控制器全频段的增益, 而 微分系数 K_d主要影响高频段的增益。在系统运行 速度缓慢或在静态悬浮时, PID 控制器的增益主要 由比例系数 K_p决定; 系统运行在柔性区间时, PID 控制器的增益则主要由微分系数 K_d决定。因此, 对 于运行在柔性区间的转子系统, 减小微分系数 K_d是 一种有效的方法。

图 16 为不同微分系数 K_d的闭环系统特征值的 运动轨迹。由图 16 可知,小微分系数的作用与微分 滤波相类似,能让位于右半平面的不稳定特征值向 虚轴方向移动,减小了这些不稳定模态的增益。但 与此同时位于左半平面的稳定特征值也向虚轴移 动。这一方法实际上是通过辅助微分环节滤波来达 到缩减整体微分增益的目的。

3.3 插入式自适应陷波器

为了降低控制器对不稳定模态的增益,可用陷 波器有针对性地对某阶模态频率进行陷波。常用的

Fig. 16 The motion trail of eigenvalue of closed-loop system under different differential coefficients K_d

陷波器为串联二阶陷波器,其传递函数表达式为:

$$H_{\rm NF}(s) = \frac{s^2 + \omega_r^2}{s^2 + \alpha \omega_r s + \omega_r^2} \tag{14}$$

式中 α为阻尼因子,用于调节陷波器尖峰的陡峭 程度;ω,为中心频率。

该二阶陷波器直接串联在 PID 控制器后,若陷 波频率较低时(400 Hz 以内),会对系统稳定性造成 影响。为了避免此类问题,可采用插入式自适应陷 波器。基于 LMS(Least Mean Square)算法的自适 应陷波器在 *t*=*kT*时刻的迭代表达式为:

 $y(k) = w_1(k) \sin(\omega_r k) + w_2(k) \cos(\omega_r k),$

$$w_1(k+1) = w_1(k) + 2ux(k)\sin(\omega_r k),$$

 $w_2(k+1) = w_2(k) + 2ux(k)\cos(\omega_r k)$ (15)

式中 *x*为输入;*u*为步长;*y*为输出;*T*为采样时间; *w*₁和*w*₂为迭代权重系数。

插入式自适应陷波器的结构如图17所示。

图 17 插入式自适应陷波器的结构 Fig. 17 The structure of plug-in adaptive notch filter

串联二阶陷波器(α=1/6)和插入式自适应陷 波器的控制器伯德图如图18所示。可见两个陷波 器的频率响应特性是类似的,但在试验应用时,若 采用串联二阶滤波器,当陷波频率较低时,陷波器 陷波频率之前的相位滞后可能会影响悬浮稳定,同 时还会增加系统阶数。另外,输出不可限幅很有可 能导致试验失败。插入式自适应陷波器应用了 LMS算法,其输出信号是以一个频率为算法中心 频率的正弦波,不包括其他频率段的分量,因此不 会对系统相位产生影响。可方便地对权重系数进 行限幅,灵活调控输出以避免陷波器对系统产生 影响。

Fig. 18 Bode plot of system before and after adding notch filter

4 试验研究

为了验证 AMB-柔性转子系统不同位效应的抑制方法,搭建了如图 19 所示的 AMB-多盘柔性转子 试验台。两个 AMB 安装在试验台两端的轴承座内 部,电涡流位移传感器安装在轴承座侧边的端盖上。 本文进行了静态悬浮、扫频、不平衡电流激励和旋转 试验。

图 19 AMB-柔性转子试验台 Fig. 19 Test rig of AMB-flexible rotor

4.1 静态悬浮试验

首先进行静态悬浮试验,偏置电流设定为1A, PID 控制器设置一组初始参数(K_p=7,K_w=3,K_d= 0.009),1号轴承悬浮成功,2号轴承x方向悬浮失 败。系统的位移信号如图 20所示。尝试两次悬浮, 均在系统即将运动到中点位置时发散而碰撞保护 轴承。

Fig. 20 Displacement signal of system suspension failure

图 21为静态悬浮试验过程中转子位移信号的 时间-频域分析结果。可以发现,发散的信号频率为 第三阶模态的频率,且在控制过程中被反复激励,为 失稳模态信号。

多次调整参数后发现,只能采用小增益(K_p≪ 5.5)的方式才可以实现转子的静态悬浮,悬浮的位 移信号如图22所示。在悬浮时,K_p对第三阶模态信 号影响大,K_d对第三阶模态信号影响小,为了稳定 悬浮,必须将K_p减小。

在系统临界发散时,启动插入式自适应陷波器,

图 21 杀犹惹存天败的位移时间"殃觋方例图 Fig. 21 Displacement time-frequency analysis diagram of system suspension failure

Fig. 22 Displacement signal of system suspension under small gain

调节陷波器的中心频率至三阶模态信号附近,试验 结果如图23所示。结果表明,插入式自适应陷波器 可在一定程度上衰减三阶模态信号,抑制系统 发散。

4.2 扫频激励试验

设定较小的 PID 值稳定悬浮后, 扫频仪依次向 系统中的每个通道注入扫频电流, 如图 24 所示。

2号AMB的x方向扫频试验结果如图25所示。 在经过第三阶柔性模态频率时出现了发散失稳,导 致扫频仪在350~400 Hz获得的数据有误,停止控 制信号重新悬浮才可恢复正常。扫频结果与仿真相

Fig. 24 Schematic diagram of frequency sweep test

Fig. 25 Frequency sweep results of rotor

符,说明受不同位影响的低阶模态对系统稳定性产 生重大影响。

4.3 模拟旋转的不平衡试验

在两个AMB中施加干扰电流,以等效旋转过 程中的不平衡激励。图26为干扰电流的频率逐渐 增大过程中转子的位移信号,在8s时开始加入模拟 旋转的不平衡力,在34s时,不平衡激励接近 300 Hz,系统出现剧烈振荡。为了研究减小增益系 数能否抑制不同位效应,保持激励幅值和频率不变, 分步调整 K_p和 K_d值,发现模拟旋转激励条件下,不 稳定模态信号受 K_d影响大,而受 K_p影响小。最终, 通过大幅度减小 K_d值(K_d=0.0065),削弱了失稳现 象。图27为施加模拟不平衡激励过程中转子位移 信号的时间-频域分析结果。可见失稳时激起了强 烈的第三阶模态信号和其他模态信号。多次降低 K_d的值后,发散信号逐渐减小,但对系统正常运行

Fig. 26 Displacement signal of applying unbalanced excitation

仍有明显影响。

静态悬浮和模拟旋转的不平衡试验的结果说明,不同位效应致使控制系统失稳,缩小了PID参数 可调范围。在静态悬浮或系统运行频率较低时,应 减小比例系数;在系统运行频率较高时,应减小微分 系数。

图 28 为加入 300 Hz 模拟不平衡电流时,改变微 分滤波系数的结果。从 N=2000 的发散状况开始, 逐渐降低 N 的数值,直到 N=800。可见与减小 K_d 的效果相似,发散在一定程度上被抑制。

4.4 旋转试验

为了验证不同位效应会激起反向涡动,下调偏 置电流至 0.5 A,将 K_p 调至 4.5, K_d 调至 0.0065,可让 转子在小刚度下稳定运行并跨越二阶弯曲临界转速 至最高运行转速 250 Hz。2号轴承的x方向在升速 和降速过程的振动如图 29 所示,时间-频域分析如 图 30 所示。

从图 30 中可以看到,在小刚度下,转子位移中 仍然含有三阶弯曲模态信号。在转子开始加速时, 三阶模态信号分为两支,其中随着转速上升而升高 的前向涡动分支信号很小,而随着转速上升而降低 的反向涡动分支信号较为明显。当转子各倍频与该 反向涡动分支信号相交时,交点颜色变深,证明转子 倍频会激发三阶弯曲模态的反向涡动。但由于此时 刚度小,闭环增益小,激发起来的不稳定信号很快在

Fig. 30 Time-frequency analysis diagram of rotor accelerating and decelerating process

回路中被削减,没有影响稳定性。

5 结 论

在电磁轴承支承的柔性转子系统中,由于各种 因素的限制,转子的位移传感器无法安装在电磁轴 承的中心位置,因而产生了传感器中心位置与电磁 轴承中心位置不同位。本文从转子动力学特性、开 环传递函数的零极点、频率响应曲线以及根轨迹等 四个方面分析了传感器与电磁轴承不重合的影响; 然后提出了不稳定模态信号的抑制方法;最后,对不 同位效应的影响和抑制方法进行了试验验证。理论 和试验结果可得到以下结论:

(1)高阶模态信号的稳定具有两个方式,高阶模态信号在二阶物理系统得到自然的衰减,而低阶模态信号需要控制器提供反向控制和相位超前。

(2)受不同位效应影响的弯曲模态振型节点位 于传感器和电磁轴承之间,导致转子系统的开环传 递函数零极点交错的规律被破坏。该模态信号分量 一旦被激起,就存在不能得到衰减的可能性。

(3)受不同位效应影响的弯曲模态对应频率下的闭环增益大于1时,将会发散而导致失稳,发散信

号为反向涡动模态信号。

(4)抑制不同位效应的方法主要是降低控制器 对不稳定弯曲模态的增益,本文提出的降低刚度、减 小PID参数和采用插入式自适应陷波器的方法,可 有效抑制不稳定模态信号的发散。

参考文献:

- [1] Schweitzer G, Maslen E H. Magnetic Bearings: Theory, Design, and Application to Rotating Machinery [M]. New York: Springer, 2009: 1-12.
- [2] Srinivas R S, Tiwari R, Kannababu C, et al. Application of active magnetic bearings in flexible rotordynamic systems—a state-of-the-art review [J]. Mechanical Systems & Signal Processing, 2018, 106: 537-572.
- [3] Spector V A, Flashner H. Sensitivity of structural models for noncollocated control systems[J]. Journal of Dynamic Systems Measurement and Control, 1989, 111 (4): 646-655.
- [4] Miu D K. Physical interpretation of transfer function zeros for simple control systems with mechanical flexibilities [J]. Journal of Dynamic Systems Measurement and Control, 1991, 113(3): 419-424.
- [5] Maslen E H, Bielk J R. A stability model for flexible rotors with magnetic bearings[J]. Journal of Dynamic Systems Measurement and Control, 1992, 114(1): 172-175.
- [6] Ramesh K, Kirk R G. Stability and response of rotors supported on active magnetic bearings[A]. Proceedings of the ASME Design Engineering Technical Conferences[C]. Albuquerque: American Society of Mechanical Engineers, 1993: 289-296.
- [7] Lefante V. Noncollocation in magnetic bearings for flexible rotors [D]. Charlottesville: University of Virginia, 1992.
- [8] Obrzut T M. Non-collocation problems in dynamics and control of mechanical systems [D]. Cleveland: Cleveland State University, 2009.
- [9] Štimac G, Braut S, Žigulić R. Vibration suppression of a flexible rotor using active magnetic bearings (AMB)
 [J]. Transactions of FAMENA, 2011, 35(3): 27-38.
- [10] Schuhmann T, Hofmann W, Werner R. Adaptive linear and extended Kalman filter applied to AMB with collocated position measuring[A]. Proceedings of the 10th International Symposium on Magnetic Bearings (ISMB) [C]. Martigny: IEEE, 2006: 1-6.
- [11] Yu J, Zhu C S. Self-sensing active magnetic bearing using wavelet based position estimation algorithm [A]. Proceedings of the 2014 17th International Conference on Electrical Machines and Systems (ICEMS)[C]. Hangzhou, IEEE, 2014; 748-751.
- [12] Wang P P, Zhu C S. Active vibration control of a

non-collocated AMBs flexible rotor system to pass the first bending critical speed[A]. Proceedings of the 2019 22nd International Conference on Electrical Machines and Systems (ICEMS)[C]. Harbin: IEEE, 2019: 1-6.

[13] Geng X X, Zhu C S. Sliding mode control based on linear quadratic regulator for an active magnetic bearing flexible rotor virtual collocated system [A]. Proceedings of the 2019 22nd International Conference on Electrical Machines and Systems (ICEMS)[C]. Harbin; IEEE, 2019: 1-5.

- [14] Mushi S E. Robust control of rotordynamic instability in rotating machinery supported by active magnetic bearings[D]. Charlottesville: University of Virginia, 2012.
- [15] 李胜远,郑龙席.磁轴承激励下转子系统动力学特性
 [J].中国机械工程,2021,32(8):901-907.
 Li Shengyuan, Zheng Longxi. Dynamics characteristics of rotor systems under magnetic bearing excitation [J].
 China Mechanical Engineering, 2021, 32(8):901-907.

Non-collocated effect on active magnetic bearing-flexible rotor systems

LI Weng-heng, ZHU Chang-sheng

(College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

Abstract: Due to the structural limitations in the flexible rotor system supported by Active Magnetic Bearings, displacement sensor cannot be installed inside the bearings, which results in the non-collocation effect. The non-collocation of rotor system will not only decrease the vibration performance of rotor system, but also cause system instability. In this paper, the dynamic model of the active magnetic bearing-flexible rotor system is established by the finite element method. Through the dynamics characteristic, open loop transfer function, frequency response, and root locus method, the features of the non-collocation system are studied. The specific positions of the unstable mode eigenvalues are analyzed by the multi-input and multi-output state equation. Solutions including reducing the controller gain and adaptive plug-in notch filter are proposed to suppress the unstable modes because of non-collocation effect. Experiments are designed in a flexible rotor system test rig. The experiments' results show that the rotor system's stability is influenced significantly by non-collocation effect. The method proposed in the passage can suppress the instability of bending modes caused by different potential effects to a certain extent.

Key words: rotor dynamics; active magnetic bearing; flexible rotor; non-collocation; stability

作者简介: 李翁衡(1998-), 男, 博士研究生。电话: 18143465389; E-mail: whengli@zju.edu.cn。 通讯作者: 祝长生(1963-), 男, 博士, 教授, 博士生导师。电话: 13857172647; E-mail: zhu_zhang@zju.edu.cn。