考虑应变率效应的混凝土单轴压缩 统计损伤本构模型

白卫峰^{1,2},张 哲¹,管俊峰¹,苑晨阳^{1,2},马 颖^{1,2}

(1.华北水利水电大学水利学院,河南郑州450046;2.河南省水工结构安全工程技术研究中心,河南郑州450046)

摘要:基于统计损伤理论,建立考虑应变率效应的混凝土单轴压缩统计损伤本构模型。考虑细观断裂和屈服两类 损伤模式,将临界状态作为均匀损伤阶段向局部破坏阶段过渡的转折点,且滞后于峰值应力状态。在动态荷载作用 下,混凝土内部细观结构的力学性能发生变化,同时微裂纹的扩展形态、路径和和数量较准静态发生显著改变,进而 改变了两类细观损伤模式的演化过程,可由5个特征参数来表征。开展混凝土单轴压缩动态力学性能试验,获得了 10⁻⁵~10⁻²/s应变率范围内的应力-应变曲线。利用6组试验数据对模型进行验证,结果表明:模型预测曲线与试验 曲线吻合良好,表征细观损伤机制的特征参数随着应变率的提高显示出明显的规律性。该模型可以较好地描述混 凝土的动态力学行为,在应变率效应机理、细观损伤机制、宏观非线性本构行为之间建立起有效的联系。

关键词:混凝土;单轴压缩;本构模型;细观损伤机制;应变率效应
中图分类号:TV331;TU528.1 文献标志码:A 文章编号:1004-4523(2023)06-1503-13
DOI:10.16385/j.cnki.issn.1004-4523.2023.06.005

引 言

混凝土在土木水利工程领域应用极其广泛。在 实际工程中,大多数混凝土结构都不可避免地要承 受各种动态荷载的作用^[1],例如机械振动、地震、台 风、海啸等。动态荷载作用下,混凝土呈现出明显的 应变率效应^[2],其力学性能受应变率影响显著。为 了对混凝土结构进行可靠的设计分析与安全评价, 充分掌握混凝土的力学特性和细观机理是十分必要 的。建立能够准确描述混凝土静、动态破坏机制的 本构模型,一直是混凝土理论研究的重点和热点 问题。

目前,学者们针对混凝土的动态力学特性开展 了大量的试验研究^[1-7],结果表明:混凝土的强度与 弹模随应变率的增大而增大,而峰值应变如何随应 变率变化目前还没有明确的结论。混凝土材料的率 相关行为与内部细观结构的物理机制之间存在着密 切的联系,Lu等^[8]和Jin等^[9]将其归结为裂纹的扩展 演化、黏性机制和惯性机制。在地震、冲击、爆炸等 不同动态荷载作用下,混凝土裂纹分布形态和破坏 模式也会发生明显的改变。孙雪等^[10]观测了混凝土 在1×10⁻⁵~5×10⁻²/s应变率范围内单轴压缩破坏 后的形态特征。在静态加载下,裂缝在混凝土表面 竖向均匀分布;随着应变率的增加,试件表面减少为 2~3条贯穿裂缝,且大多为斜裂缝。田威等[11]借助 CT技术实时扫描观测了混凝土在正弦波动力压缩 作用下的破坏过程;图像显示动压作用下试件多个 部位同时产生裂纹,裂纹生成和扩展速度快,贯通裂 纹数量增多。刘练等^[12]借助落锤冲击装置,对C30 圆柱体试件进行了冲击试验。发现试件在10⁻¹~ 10°/s应变率范围内破坏形态相似,两端形成2个相 对的圆锥,中部破坏后存在较多的柱条状碎块,冲击 高度越高,中部破坏越严重。刘传雄等[13]利用高速 摄影装置获得了混凝土在30~180/s应变率范围内 冲击破坏过程中的摄影图片;图片显示当试件达到 极限强度时,出现一条轴向可见宏观裂纹,此后该裂 纹快速扩展、变宽,并产生多条沿试样轴向扩展的裂 纹。Feng等^[14]对泡沫混凝土开展了应变率范围为 60~250/s的动态冲击试验,观察了试样的破坏特 征。在较低应变率下,试样破环呈碎块状;随着应变 率的提高,试样损坏更加严重,碎块变小且数量减 少,粉末状碎屑明显增多。为能准确模拟混凝土在 复杂应力状态下的力学行为,一些学者建立了相应 的动态本构模型。张研等[15]在一般弹塑性损伤模型 的基础上,建立了应变率型弹塑性损伤本构模型,可

收稿日期: 2021-12-06; 修订日期: 2022-04-08

基金项目:国家自然科学基金资助项目(51679092,52179132);河南省高等学校青年骨干教师培养计划(2021GGJS074)。

以预测应变率在10⁻⁷~10²/s范围内混凝土的动态 强度。李杰等[16]考虑孔隙水对混凝土应变率敏感性 的影响,从Stefan效应出发,建立了混凝土动力随机 损伤本构关系,能够描述单调与反复加载条件下的 混凝土力学行为。Huang等^[17]对钢纤维与聚丙烯纤 维混凝土开展了动态压缩试验,建立了基于损伤力 学的混凝土单轴压缩动态本构模型,可以很好地描 述纤维混凝土的动态力学性能。张永亮等[18]对干燥 与饱和混凝土进行了一系列的动静态压缩试验,基 于损伤力学建立了简化的损伤本构模型,能够反映 干燥与饱和状态下混凝土的应力-应变关系。张社 荣等[19]制备了2种级配的碾压混凝土试样并开展了 动态冲击试验,建立了碾压混凝土损伤本构模型,能 够有效地模拟碾压混凝土的动态压缩特性。陈伟 等^[20]开展了不同尺寸混凝土试件的单轴压缩试验, 建立了考虑尺寸效应的混凝土动态本构模型,并对 不同尺寸混凝土试件的应力-应变曲线进行了拟合 分析。张明虎等^[21]研究了沙漠砂混凝土的动态力学 性能,在非线性热黏弹性本构模型(ZWT模型)基础 上,建立沙漠砂混凝土动态本构模型,可较好地描述 沙漠砂混凝土在应变率为10⁻⁶~10⁻⁴/s范围内的力 学行为。如上所述,现有的混凝土动态试验大多集 中于对宏观力学性能的研究,很难揭示混凝土的破 坏机理与细观损伤演化规律,而从细观角度描述混 凝土非线性力学行为的本构模型还很少。

混凝土作为一种典型的非均质复合材料,其内 部存在着大量不连续的缺陷(微裂纹和微孔洞)。混 凝土变形破坏实质上是内部微裂纹、微孔洞等微缺 陷成核、萌生、扩展的结果,统计损伤力学已成为模 拟混凝土等准脆性材料微裂纹渐进扩展过程非线性 行为的有力工具^[22-27]。该类模型将材料代表性体积 单元抽象为由无数个细观单元(微弹簧、微杆件等) 组成的复杂系统,通过赋予每个细观单元不同的力 学参数(强度、特征应变等)并假设其服从韦伯、正态 等统计分布形式,引入材料的细观非均质性,能够在 细观损伤机制与宏观非线性本构行为之间建立起有 效的联系。

根据采用的细观力学指标参数的不同,现有统 计损伤模型可分为以下两类:①单参数模型,以Krajcinovic等^[22]提出的平行杆模型(PBS模型)为代表。 每个细观单元被赋予一个特征参量:断裂应变(或断 裂强度);存在一种破坏模式:脆性断裂,定义为断裂 损伤,表征微裂纹的萌生和扩展过程。不足之处:该 类模型实质上描述的是一种理想化的细观非均质弹 脆性体单一均匀损伤演化过程,无法反映微裂纹之 间的相互作用,也无法有效反映真实准脆性材料变 形过程中所表现出的分布式损伤累积和局部灾变两 阶段特征。②双参数模型,以白卫峰等^[25]提出的修 正平行杆模型(IPBS模型)为代表。每个细观单元 被赋予两个特征参量:断裂应变和屈服应变。其存 在两种破坏模式:弹性断裂和屈服断裂,分别定义 为断裂损伤和屈服损伤。其中屈服损伤模式表征 微裂纹的相互作用以及微结构受力骨架的优化调 整过程,在整个变形破坏过程中起到关键的作用。 该类损伤模型将混凝土等准脆性材料变形破坏描 述为一类由细观损伤累积演化驱动的量变到质变 的过程,能够有效反映真实材料变形和破坏的两阶 段特征。

基于统计损伤理论,本文建立了考虑应变率效 应的混凝土单轴压缩统计损伤模型。通过试验获得 10⁻⁵~10⁻²/s应变率范围内的混凝土单轴压缩应 力-应变曲线,同时整理了文献[2-5]中的5组试验数 据,利用试验结果验证模型的合理性与适用性,分析 应变率效应对细观损伤参数的影响规律,探讨细观 损伤机制与宏观非线性本构行为之间的内在关系。

1 两阶段特征

1.1 试验现象

宏观试验表明,与单轴拉伸相似,混凝土在单轴 压缩下的变形和破坏也可分为分布损伤和局部破坏 两个阶段^[27]。如图1所示,其中L为试件长度, σ 为 压应力,ε,为极限压应变。在初始阶段,由于泊松效 应,混凝土基体中会产生局部拉应力和应变。当局 部拉应变超过极限时,会发生微裂纹和微缺陷的萌 生、扩展,方向大致平行于压应力。在此阶段,微裂 纹随机产生并分布在整个试件范围内,微裂纹密度 保持较小的程度;整个试件可近似认为处于均匀损 伤和变形状态。随着压力的增加,当微观损伤累积 到一定阈值时,由于微裂纹的连接和扩展,就会形成 宏观的纵向拉伸裂纹;同时出现损伤局部化,形成压 缩破坏区(Compression Failure Zone, CFZ)。图1中 h为CFZ的长度,在CFZ中,随着纵向裂纹的扩展和 局部化剪切带的出现,压缩损伤将进一步加剧。与 此同时,其余部位将出现卸载现象并保持连续体状 态。Markeset 等^[28]和 Jansen 等^[29]建议 CFZ 长度为 试件宽度(直径)的2~2.5倍。Nakamura等^[30]的试 验结果显示CFZ长度与试件的形状和尺寸无关,而 与最大骨料尺寸、骨料级配和抗压强度有关。针对 CFZ长度的影响因素还存在争议。破坏阶段的局 部化行为加深了问题的复杂性,增大了预测难度,导 致该阶段应力-应变行为难以再用整体平均量统一 表示。

白以龙等^[31]和夏蒙棼等^[32]基于突变理论将岩 石、混凝土等准脆性固体变形破坏过程分为分布式 损伤累积和诱发局部灾变两个阶段,其中的转变点 (临界状态)具有关键意义。当材料临近灾变破坏 时,与内部损伤有关的物理量如变形、声发射信号、 电磁信号等会出现异常现象。临界敏感性、跨尺度 涨落和损伤局部化是触发固体灾变破坏的共性前兆 特征。白卫峰等^[6,33]将混凝土变形破坏过程理解为 材料系统能动地适应外界荷载环境变化的自组织行 为,细观结构中存在2类作用机制:①劣化效应,表 征微裂纹的萌生、扩展及声发射等能量耗散行为;② 强化效应,表征细观结构中应力重分布及受力骨架 优化调整(潜在力学性能进一步发挥)。当材料潜在 力学性能发挥到极限时,将会触发局部灾变破坏。

1.2 局部化转变点

混凝土非线性的本构行为与宏观变形破坏特征、细观损伤机制之间密切相关。灾变前兆是近年 来学者们关注的研究热点,关于局部化转变点(临界 状态)在应力-应变曲线上的对应位置还没有明确结 论,主要存在以下两种观点:

第一种,认为转变点和峰值名义应力状态为同 一状态,如图1(b)所示,其中ε_p为峰值应变。在 Markeset等^[28]建立的压缩损伤区模型中,考虑了损 伤局部化,并将转变点视为与名义应力峰值状态相 同的状态。当名义应力达到峰值时,随即发生损伤 和变形局部化现象,在CFZ内损伤进一步加剧,其 余区域出现卸载。CFZ内的软化行为是由于纵向 拉伸裂纹的扩展和局部剪切带的形成共同作用导致 的,应力-应变曲线的平均软化段分支由CFZ和卸载 区的变形共同决定。

第二种,认为转变点滞后于峰值名义应力状态, 如图 1(c)所示,其中 ϵ_{cr} 为局部化转变点对应应变。 Geel^[34]在混凝土单轴压缩试验中,沿试件高度方向 布置应变片,并借助高速摄像技术重点观测了变形 和损伤局部化现象。结果显示局部化转变点滞后于 峰值名义应力状态,位于应力-应变曲线软化段的 "陡峭"部位。CFZ以外区域在经历一定的软化变 形后才出现卸载现象,即卸载部位对软化段曲线存 在一定的贡献。在局部破坏阶段,对应的应力-应变 曲线软化段形状存在明显的尺寸效应,与试件尺寸 或位移计量程有关。随着量程的增加,软化段变得 更加陡峭,甚至会出现应力跌落现象。通过具体试 验得到的局部破坏阶段软化曲线不能代表纯粹的材 料属性。郝圣旺^[35]、张晓君^[36]在岩石压缩试验中同 样观测到局部化转变点滞后于峰值名义应力状态。 纪洪广等[37]和董毓利等[38]在混凝土单轴压缩试验中 采集了声发射信号,结果显示声发射突变点滞后于 峰值名义应力状态,发生在软化阶段。

2 统计损伤模型

Bai等^[27]和白卫峰等^[39-41]建立了混凝土单轴压 缩统计损伤模型,压缩方向损伤由泊松效应引起的 侧向拉损伤控制。如图2所示,A,B和C分别为初 始损伤状态、峰值名义应力状态和临界状态; ϵ^+ 为等 效传递拉损伤应变,满足 ϵ^+ =一 $\nu\epsilon$, ν 为泊松比。将 混凝土单轴压缩过程分为均匀损伤和局部破坏两个 阶段,考虑断裂和屈服两类细观损伤模式(可分别由 微杆件的断裂和屈服模拟),对应的概率密度函数分 别为 $q(\epsilon^+)$ 和 $p(\epsilon^+)$,与细观结构中"劣化"和"强化" 效应对应。模型中临界状态被赋予了特定的含义, 其不仅是混凝土宏观变形从均匀损伤阶段向局部破 坏阶段转变的状态,还是细观损伤演化累积由量变 到质变的标志;细观屈服损伤模式反映了细观结构 中微裂纹的相互作用以及有效受力骨架优化调整的 过程,在整个过程中起到核心作用。临界状态滞后 于峰值状态,位于名义应力-应变曲线的峰后软化段 上,这与Geel^[34]的试验结果是一致的。如图2所示, $\epsilon_{cr}为临界状态对应压应变; \epsilon_a 和 \epsilon_b 与 \epsilon⁺对应,分别表$ $示初始损伤应变和最大屈服损伤应变, \epsilon_b = - \nu \epsilon_{cr}$ 。

在均匀损伤阶段,本构关系表示如下:

$$\sigma = E(1 - D_{y})(1 - D_{R})\varepsilon$$
(1)

$$\sigma_{\rm E} = E(1 - D_{\rm y})\varepsilon \qquad (2)$$

$$D_{y} = \int_{0}^{\epsilon^{+}} p(\epsilon^{+}) d\epsilon^{+} - \frac{\int_{0}^{0} p(\epsilon^{+}) \epsilon^{+} d\epsilon^{+}}{\epsilon^{+}} \qquad (3)$$

$$D_{\rm R} = \int_{0}^{\epsilon^{+}} q(\epsilon^{+}) d\epsilon^{+}$$
 (4)

$$E_{v} = \int_{0}^{\varepsilon^{+}} p(\varepsilon^{+}) \mathrm{d}\varepsilon^{+}$$
 (5)

式中 σ和σ_E分别为名义应力和有效应力;E为弹性 模量;D_R和D_y分别为断裂和屈服损伤变量;E_v为进 化因子,和细观屈服损伤相关,表征材料受力骨架优 化调整的程度,变化范围为0~1。当E_v=1时,对应 临界状态,细观结构受力骨架调整至最优,有效应力 达到最大值,随即触发局部灾变过程。

图 2 宏观本构行为与细观损伤机制的对应关系

Fig. 2 Relationship between macro constitutive behavior and meso-damage mechanism

3 动态应变率影响

目前,关于混凝土应变率效应的物理机理主要

有以下5种观点[8-9,42-43]:①黏性效应:由于混凝土基 体微孔隙内部存在自由水,动态荷载作用下微孔隙 内产生 Stefan 效应,即产生了阻碍微裂纹萌生、扩展 的阻力,进而导致混凝土强度提高。②惯性效应:惯 性力的作用限制试件的变形,在高应变率下惯性效 应可以显著提高混凝土强度。③裂纹的扩展演化: 与静载下裂纹大多沿细观结构薄弱界面过渡区(Interface Transition Zone, ITZ)扩展不同, 动载下大部 分裂纹穿过强度较高的骨料,使得强度明显提高。 ④断裂韧性:断裂韧性反映了材料抵抗裂纹扩展的 能力,对于混凝土中的微单元,每个裂纹在动态加载 下都会产生扩展阻力。应变率越高,扩展阻力越大, 强度越高。⑤能量耗散:静态破坏时,混凝土内部应 变能积聚与释放的速度较慢,裂纹沿着内部薄弱界 面扩展;而动态破坏时,应变能积聚的速度快,需要 在瞬间得到释放,裂纹沿着能量释放最短的路径扩 展,即穿过强度较高的骨料,使得混凝土的动强度高 干静强度。

上述观点所提出的物理机制虽然各不相同,但 对混凝土动态力学性能的影响效应均可概括如下: 一方面,改变了混凝土细观结构的受力性能,提高了 混凝土细观结构的"刚度",可由初始弹性模量E表 征;另一方面,改变了混凝土细观结构中微缺陷萌生 和扩展的路径、形态和数量;即改变了混凝土细观损 伤机制的累积演化过程,可由统计损伤模型中的 $q(\epsilon^+)和p(\epsilon^+)进行表征。$

事实上, $q(\varepsilon^+)$ 和 $p(\varepsilon^+)$ 可能服从韦伯、正态等复 杂的统计分布规律,为便于简化分析,可假设 $q(\varepsilon^+)$ 和 $p(\varepsilon^+)$ 服从三角形概率分布形式(如图2所示)。 研究表明^[25-27],当二者均采用三角形分布时就能很 好地拟合混凝土试验应力-应变曲线,并能反映出细 观损伤机制的演化规律,表达式如下^[33]:

$$q(\epsilon^{+}) = \begin{cases} 0, \ \epsilon^{+} \leqslant \epsilon_{a} \\ \frac{2H(\epsilon^{+} - \epsilon_{a})}{(\epsilon_{b} - \epsilon_{a})^{2}}, \ \epsilon_{a} < \epsilon^{+} \leqslant \epsilon_{b} \end{cases}$$
(6)

$$p(\varepsilon^{+}) = \begin{cases} 0, \varepsilon \leqslant \varepsilon_{a} \\ \frac{2(\varepsilon^{+} - \varepsilon_{a})}{(\varepsilon_{b} - \varepsilon_{a})(\varepsilon_{b} - \varepsilon_{a})} , & \varepsilon_{a} < \varepsilon^{+} \leqslant \varepsilon_{b} \\ \frac{2(\varepsilon_{b} - \varepsilon^{+})}{(\varepsilon_{b} - \varepsilon_{b})(\varepsilon_{b} - \varepsilon_{a})} , & \varepsilon_{b} < \varepsilon^{+} \leqslant \varepsilon_{b} \end{cases}$$
(7)

式中 $\epsilon_b \pi \epsilon_h \beta h \beta \eta \sigma(\epsilon^+) \pi p(\epsilon^+) 峰值对应应变;$ H=D_R(ϵ_b)为临界状态对应断裂损伤值。

如图 3 所示, 混凝土宏观非线性应力-应变行为 由细观尺度上内部结构的"刚度"和损伤演化过程共 同决定, 可由E, ϵ_a , ϵ_h , ϵ_b 和H共5个参数表征。假设 在不同加载应变率下, 混凝土初始"刚度"和细观损 伤演化过程服从一定的规律性, 上述5个参数可以 表示为与应变率 é 相关的函数。本文引入动态影响 因子(Dynamic Impact Factor, DIF),将其定义为材 料参数在动态荷载作用下与准静态荷载作用下的比 值,上述5个特征参数对应的动态影响因子分别表 示为 DIF_E, DIF_b, DIF_b和 DIF_H,表达式如下:

$$DIF_{E} = E_{d}/E_{s} = f_{1}(\lg(\dot{\epsilon}_{d}/\dot{\epsilon}_{s}))$$

$$DIF_{a} = \epsilon_{a,d}/\epsilon_{a,s} = f_{2}(\lg(\dot{\epsilon}_{d}/\dot{\epsilon}_{s}))$$

$$DIF_{h} = \epsilon_{h,d}/\epsilon_{h,s} = f_{3}(\lg(\dot{\epsilon}_{d}/\dot{\epsilon}_{s}))$$

$$DIF_{b} = \epsilon_{b,d}/\epsilon_{b,s} = f_{4}(\lg(\dot{\epsilon}_{d}/\dot{\epsilon}_{s}))$$

$$DIF_{H} = H_{d}/H_{s} = f_{5}(\lg(\dot{\epsilon}_{d}/\dot{\epsilon}_{s}))$$
(8)

式中 下标带"d"和"s"的变量分别表示混凝土在动态应变率下和准静态应变率下对应参数,通常取准静态应变率为;=10⁻⁵/s。

在本文建立的混凝土动态损伤本构模型中,关 键工作是确定上述5个特征参数随应变率的演化规 律,具体取值可根据不同应变率下混凝土单轴压缩 应力-应变试验曲线确定。其中:E由曲线上升段初 始切线模量确定;ε_a,ε_h,ε_b和*H*利用MATLAB遗传 算法模块通过多元回归分析确定^[40-41],具体步骤如 下:①创建适应度函数,以应力预测值和实测值离差 的最小平方和作为优化判据,包含ε_a,ε_h,ε_b和*H*共4 个参数;②初设4参数取值区间;③执行遗传算法, 获得本次迭代计算中4参数最优解,根据结果调整 和缩小参数搜索区间范围;④重复执行第③步,直至 获得参数最优解。

4 试验验证与分析

本文开展了混凝土单轴动态压缩试验,配合比 为 $m_{\kappa\bar{\kappa}}: m_{\kappa}: m_{\bar{\kappa}}: m_{\bar{\kappa}}: m_{\bar{\kappa}\kappa\bar{\kappa}} = 1: 0.49: 1.73: 3.27:$ 0.0025。水泥为河南丰博天瑞生产的 P•O 42.5 普通 硅酸盐水泥,粗骨料为粒径范围5~20mm的碎石, 细骨料为天然河砂(细度模数2.6,中砂),水为郑州 市自来水,减水剂为聚羧酸高效减水剂。试件采用 100 mm×100 mm×100 mm的立方体试块,浇筑成 型1d后拆模,放入标准养护室养护28d。单轴压缩 试验在YAW-5000型微机控制电液伺服压力试验 机上进行,试验中采用10⁻⁵,10⁻⁴,10⁻³,10⁻²/s四种 应变率,本文试验记为GP-1。文献[2-5]分别开展 了混凝土动态压缩试验,获得5组不同应变率下混 凝土单轴压缩动态应力-应变全曲线,分别记为 GP-2~GP-6。上述6组试验的基本信息如表1所示。 其中f_{c,s},E_s和ε_{p,s}为准静态应变率下对应的抗压强度、 弹性模量和峰值应变。利用本文建立的损伤本构模 型对6组试验数据进行反演分析,确定5个参数随应 变率的演化规律,探讨动态压缩过程中混凝土细观 损伤机制与宏观非线性力学行为之间的联系。文中压 应力/应变为负,拉应力/应变为正,泊松比v=0.2。

表1 试验基本信息 Tab.1 Basic information of tests

组别	来源	$f_{\rm c,s}/~{ m MPa}$	$E_{\rm s}/~{ m GPa}$	$\epsilon_{p,s}/(\times 10^{-4})$	试件尺寸/mm ³	骨料粒径/mm	应变率/s ⁻¹
GP-1	本文	49.14	21.00	-30.08	$100\!\times\!100\!\times\!100$	5~20	$10^{-5} \sim 10^{-2}$
GP-2	闫东明 ^[2]	9.84	14.40	-12.00	$100\!\times\!100\!\times\!100$	最大10	$10^{-5} \sim 10^{-2}$
GP-3	施林林等[3]	24.51	27.60	-20.81	$150\!\times\!150\!\times\!150$	5~40	$2 \times 10^{-5} \sim 2 \times 10^{-2}$
GP-4	肖诗云等[4]	25.65	25.99	-11.08	$100\!\times\!100\!\times\!100$	最大20	$10^{-5} \sim 10^{-2}$
GP-5	刘录良题	46.09	41.43	-13.16	$70 \times 70 \times 200$	5~20	$10^{-5} \sim 10^{-2}$
GP-6	刘录良 ^{5]}	38.75	31.50	-14.67	$70 \times 70 \times 200$	5~20	$10^{-5} \sim 10^{-2}$

注:GP-1,GP-5,GP-6组中 $f_{c,s}$, E_s 和 $\varepsilon_{p,s}$ 为典型试验曲线的抗压强度、弹性模量和峰值应变;其余组中 $f_{c,s}$, E_s 和 $\varepsilon_{p,s}$ 为文献中提供的平均抗压强度、弹性模量和峰值应变。

4.1 应力-应变曲线

图 4(a)显示了 GP-1 组试验获得的 4 条单轴压 缩名义应力-应变曲线。不同应变率下对应曲线的 形状具有相似性,峰值应力、峰值应变和弹性模量随 应变率的提高而增大。图4(a)中同时显示了本文 模型预测的单轴压缩均匀损伤阶段对应的名义应 力-应变曲线,包含上升段和部分下降段,且下降段 随应变率的增加而变短。预测曲线与试验曲线显示 出很好的相关性,吻合良好。

图 4(b)~(f)分别显示了 GP-2~GP-6 组试验获 得的混凝土单轴压缩动态应力-应变曲线。其中, GP-4 组峰值应变随应变率的提高呈现明显减小的 趋势,且下降段较其他组更加陡峭。其余组应力-应 变曲线与GP-1组具有相似的变化趋势和形态特征。 图中同样显示了利用本文模型预测的均匀损伤阶段 对应的名义应力-应变曲线,与试验曲线吻合良好。 计算参数如表2所示,其中*R*²为相关系数。

	表 2	计算参数
Tab. 2	Calc	ulation parameters

组名	$\dot{\epsilon}/\mathrm{s}^{-1}$	$E/{ m GPa}$	$\epsilon_a/(imes 10^{-4})$	$\epsilon_h/(\times 10^{-4})$	$\epsilon_b/(\times 10^{-4})$	Н	R^2
	10^{-5}	21.00	2.676	8.667	8.923	0.536	0.9976
CD 1	10^{-4}	23.00	2.467	8.366	8.622	0.455	0.9980
GP-1	10^{-3}	26.00	1.866	7.970	8.323	0.356	0.9988
	10^{-2}	30.00	0.667	7.467	8.084	0.216	0.9979
	10 ⁻⁵	13.00	0.456	1.424	3.658	0.376	0.9982
CD 9	10^{-4}	14.00	0.407	1.554	3.479	0.306	0.9977
GP-2	10^{-3}	15.30	0.356	1.903	3.237	0.277	0.9967
	10^{-2}	16.30	0.255	2.035	3.158	0.206	0.9989
	2×10^{-5}	20.00	0.354	1.040	7.122	0.183	0.9991
CD 2	2×10^{-4}	21.50	0.305	1.368	6.978	0.141	0.9982
GP-3	2×10^{-3}	23.70	0.255	1.396	6.738	0.136	0.9984
	2×10^{-2}	26.00	0.228	1.427	6.601	0.111	0.9987
	10^{-5}	25.00	1.977	2.527	2.832	0.600	0.9968
CD 4	10^{-4}	28.00	2.066	2.226	2.502	0.550	0.9927
GP-4	10^{-3}	32.00	1.883	2.027	2.331	0.461	0.9964
	10^{-2}	37.50	1.682	1.957	2.020	0.222	0.9961
	10^{-5}	41.43	1.602	2.963	3.618	0.377	0.9976
CDE	10^{-4}	47.00	1.242	2.907	3.498	0.338	0.9993
GP-5	10^{-3}	55.00	0.654	2.853	3.279	0.257	0.9992
	10^{-2}	62.00	0.503	2.703	3.118	0.207	0.9993
	10^{-5}	31.50	1.790	3.158	4.122	0.450	0.9994
C D-6	10^{-4}	35.00	1.701	3.028	3.932	0.390	0.9997
GP-0	10^{-3}	39.00	1.603	2.958	3.753	0.339	0.9988
	10^{-2}	44.00	1.301	2.899	3.521	0.250	0.9996

图 5(a)~(f)显示了本文模型预测的6组试验均 匀损伤阶段对应的有效应力-应变曲线。该模型从 有效应力角度理解混凝土单轴压缩过程:在均匀损 伤阶段,σ先增大后减小,中间存在峰值名义应力状 态;σ_E单调增大,在临界状态达到最大值,随后进入 以损伤局部化为特征的破坏阶段。

定义 DIF。和 DIF。分别为动态与准静态应变率 下峰值应力、峰值应变的比值。

4.1.1 峰值应力

图 6 显示了 *DIF*。与 lg($\dot{\epsilon}_{d}/\dot{\epsilon}_{s}$)之间的关系。对于 GP-1,当 $\dot{\epsilon}$ 由 10⁻⁵/s增大到 10⁻²/s时,峰值应力 σ_{p} 由 -49.14 MPa 线性增大到 -66.06 MPa,提高了 34.43%。其余 5组试验中 σ_{p} 与 $\dot{\epsilon}$ 之间同样呈现良好 的线性增长趋势。通过回归分析获得的拟合曲线和 公式如图 6 所示。其中 R^{2} 为相关系数,CV为变异系 数。结果显示 $\dot{\epsilon}$ 每增大10倍, DIF_{s} 平均提高 9.02%。

4.1.2 弹性模量

图 7 显示了 DIF_{E} 与 lg($\dot{\epsilon}_{d}/\dot{\epsilon}_{s}$)之间的关系。对

于 GP-1,当 $\dot{\epsilon}$ 由 10⁻⁵/s 增大到 10⁻²/s 时, E由 21.00 GPa线性增大到 30.00 GPa, 提高了 42.86%。其余 5 组试验中 E 与 $\dot{\epsilon}$ 之间同样呈现良好的线性增长趋势, 通过回归分析获得的拟合曲线和公式如图 7 所示。结果显示 $\dot{\epsilon}$ 每增大 10 倍, DIF_E 平均提高 12.66%。

4.1.3 峰值应变

图 8 显示了 DIF_{ϵ} 与 lg($\dot{\epsilon}_{d}/\dot{\epsilon}_{s}$)之间的关系。对于 GP-1,当 $\dot{\epsilon}$ 由 10⁻⁵/s 增大到 10⁻²/s 时,峰值应变 ϵ_{p} 由 -30.08×10^{-4} 增 大 到 -35.13×10^{-4} ,提 高 了 16.79%。随着 $\dot{\epsilon}$ 的提高,6组试验中 ϵ_{p} 的变化趋势并 不一致。其中,GP-1与GP-3组 DIF_{ϵ} 随 ϵ 的增大呈 明显增大趋势;GP-2组 DIF_{ϵ} 基本没有变化;GP-4, GP-5与GP-6组的 DIF_{ϵ} 呈近似线性减小的趋势,当 ϵ 增大到10⁻²/s时GP-4组 DIF_{ϵ} =0.81。通过回归分 析获得的拟合曲线如图8所示。曾莎洁等^[7]认为,峰 值应变存在的这种现象主要和混凝土材料的离散性 和率相关效应的耦合作用有关。

4.2 细观损伤参数及损伤机制分析

图 9 显示了 GP-1 组对应的屈服损伤相关参数 $\epsilon_a, \epsilon_h, \epsilon_b$ 随 lg($\dot{\epsilon}_d/\dot{\epsilon}_s$)的变化曲线,上述 3 个特征参数 控制着 $p(\epsilon^+)$ 的三角形分布形态,根据其变化趋势即 可确定动态加载应变率对混凝土细观屈服损伤演化 过程的影响规律。随着应变率的增加,3 个参数均 呈现出线性减小的趋势。 $\epsilon_a, \epsilon_h, \epsilon_b$ 分别由 $\dot{\epsilon}$ 为10⁻⁵/s 时的 2.676×10⁻⁴, 8.667×10⁻⁴和 8.923×10⁻⁴,减小 到 10⁻²/s 时的 0.667×10⁻⁴, 7.467×10⁻⁴和 8.024× 10⁻⁴。 ϵ_h 与 ϵ_b 非常接近,且减小的速率几乎一致。

图 10显示了 GP-1组对应的断裂损伤相关参数 H随 lg(*ɛ̇*_d/*ɛ̇*_s)的变化曲线。H表征临界状态对应的 微裂纹密度,随着应变率的增加,H呈现出线性减小 的趋势,由 é为 10⁻⁵/s 时的 0.536 减小到 10⁻²/s 时的 0.216。H的变化趋势与试验现象是一致的。在高 应变率加载过程中,微裂纹往往直接穿过骨料,而不 是沿着骨料和砂浆交界面的薄弱部位扩展,从而导 致裂纹的长度和数量均有所减少。孙雪等^[10]的试验 结果显示高应变率下混凝土试件破坏前的表面裂缝 数量较低应变率下明显减少。

图 11 显示了 GP-1组中进化因子 E_v 的演化曲 线。在均匀损伤阶段, E_v 的变化范围为 0~1, 在整 个损伤演化过程中发挥了关键作用。结果显示, 随 着 $\dot{\epsilon}$ 的增大,临界应变 ε_{cr} 线性减小, 由 $\dot{\epsilon}$ =10⁻⁵/s时的 -44.62×10⁻⁴减小到 $\dot{\epsilon}$ =10⁻²/s时的-40.42×10⁻⁴; E_v 的演化进程显著加快。从变形的角度看, 在相同 应变的情况下, $\dot{\epsilon}$ 越高, E_v 值越大。因此, 在高应变 率下混凝土更早地达到临界状态, 导致变形能力降 低, 延性变差。当 E_v =1时达到临界状态, 意味着细 观结构受力骨架已被调整至最优, 材料潜在力学性 能发挥到极限, 试件随即进入局部破坏阶段。

图 12 显示了 GP-1 组中断裂损伤 D_R的演化曲 线。D_R与微裂纹萌生、扩展过程相关。与 *i*=10⁻⁵/s 的准静态加载过程相比较,随着*i*的增大,D_R的演化 过程呈现前期加快而后期减缓的趋势。同时由于高 应变率下混凝土更早地达到临界状态,导致临界状 态对应的 $D_{\rm R}$ 值随应变率的增加而减小,由 $\dot{\epsilon}$ =10⁻⁵/s 时的0.536减小到 $\dot{\epsilon}$ =10⁻²/s时的0.216。在整个均 匀损伤阶段,微裂纹密度仍维持在较小的范围内。

为使获得的细观损伤特征参数的演化规律更具 代表性,本文进一步将6组试验数据获得的损伤参 数值进行汇总。

图 13~15 中显示了屈服损伤相关参数对应动态影响因子 DIF_a , DIF_h 和 DIF_b 与 $lg(\dot{\epsilon}_d/\dot{\epsilon}_s)$ 之间的关系。可以看出,对于每组试验,3个参数与应变率之间均呈明显的线性关系;从6组试验数据整体来看,不同试验对应的3个参数随应变率的变化趋势也同样呈现较好的相关性。图 13~15 中同时显示了通过回归分析获得的线性拟合曲线,拟合公式如下:

$$DIF_{a} = \epsilon_{a,d} / \epsilon_{a,s} = 1 - 0.1382 \lg \left(\dot{\epsilon}_{d} / \dot{\epsilon}_{s} \right),$$

$$R^{2} = 0.9798, \ CV = 17.78\%$$

$$DIF_{b} = \epsilon_{b,d} / \epsilon_{b,s} = 1 + 0.0190 \lg \left(\dot{\epsilon}_{d} / \dot{\epsilon}_{s} \right),$$

$$(9)$$

$$R^{2} = 0.7627, \ CV = 14.57\%$$

$$DIF_{b} = \epsilon_{b,d}/\epsilon_{b,s} = 1 - 0.0492 \lg \left(\dot{\epsilon}_{d}/\dot{\epsilon}_{s} \right),$$

$$(10)$$

 $R^2 = 0.9999, \ CV = 3.92\%$ (11)

当 ϵ 由 10⁻⁵/s 增 大 至 10⁻²/s 时,对于 GP-1, DIF_a,DIF_h和 DIF_b的值分别变为 0.25,0.86 和 0.91; 对于 拟合曲线,DIF_a,DIF_h和 DIF_b的值分别变为 0.59,1.06 和 0.85。

图 16 中显示了断裂损伤相关参数对应动态影响因子 $DIF_{\rm H}$ 与lg($\dot{\epsilon}_{\rm d}/\dot{\epsilon}_{\rm s}$)之间的关系。可以看出,6 组试验对应的 $DIF_{\rm H}$ 值均随应变率的增大呈现出良 好的线性关系,线性拟合曲线和公式如图 16 和下式 所示:

$$DIF_{\rm H} = H_{\rm d}/H_{\rm s} = 1 - 0.1559 \lg (\dot{\epsilon}_{\rm d}/\dot{\epsilon}_{\rm s}),$$
$$R^2 = 0.9855, \ CV = 7.05\%$$
(12)

当 $\dot{\epsilon}$ 由 10⁻⁵/s 增大至 10⁻²/s 时,对于 GP-1, $DIF_{\rm H}$ 的值变为 0.40;对于 拟合曲线, $DIF_{\rm H}$ 的值变为 0.53。

由上述结果可以看出,虽然6组试验中材料、配 合比、试件尺寸、实验条件等各不相同,获得的准静 态和动态情况下的混凝土单轴压缩应力-应变曲线 之间存在很大的差别,但通过反演分析获得的细观 损伤参数随应变率的增大呈现出明显规律性的变化 趋势;说明在动态压缩情况下,应变率对不同类型和强 度等级混凝土细观损伤机制的影响规律是相似的。

图 17,18分别比较了两个特征状态(临界状态 与峰值应力状态)对应名义应力比 σ_{cr}/σ_{p} 与对应应变 比 $\epsilon_{cr}/\epsilon_{p}$ 随应变率的变化规律。 σ_{cr}/σ_{p} 的上限和下限 值分别为 0.96 和 0.47,当 ϵ 由 10⁻⁵/s 提高至 10⁻²/s 时, σ_{cr}/σ_{p} 的平均值由 0.71增加至 0.91。 $\epsilon_{cr}/\epsilon_{p}$ 的上限 和下限值分别为 1.59 和 1.12,当 ϵ 由 10⁻⁵/s 提高至 10⁻²/s时, $\epsilon_{cr}/\epsilon_{p}$ 的平均值由 1.41减小到 1.25。说明 随着应变率的增大,临界状态逐渐接近峰值应力状 态,均匀损伤阶段对应的部分下降段曲线逐渐变短, 混凝土延性降低,脆性破坏的现象更加明显。为充

分考虑混凝土的延性,将临界状态作为本构模型的 最终破坏点。Xiao等^[44]提出将单轴压缩曲线下降 段对应应力为0.85σ_p的状态定义为极限状态,这与 本文模型中临界状态的定义是类似的。

5 结 论

(1)本文建立了考虑应变率效应的混凝土单轴 压缩统计损伤本构模型,考虑了断裂和屈服两类细 观损伤模式。动态荷载作用下,混凝土细观结构的 力学性能发生变化,同时微裂纹的扩展形态、路径和 和数量较准静态发生显著改变;进而改变了两类损 伤模式的演化过程,可由*E*,ε_a,ε_b,ε_b和*H*共5个特征 参数进行表征。

(2)开展了混凝土单轴压缩动态力学性能试验, 获得 $10^{-5} \sim 10^{-2}$ /s 应变率范围内的应力-应变曲线。 验证了本文模型的合理性与适用性,模型预测曲线 与试验曲线吻合良好。随着应变率的提高,5个特 征参数与应变率之间均呈现良好的线性关系;E线 性增加,而 $\epsilon_a,\epsilon_b, \epsilon_b$ 和H线性减小。探讨了应变率效 应机理、细观损伤机制、宏观非线性本构行为之间的 内在联系。

(3)结合6组试验数据,获得损伤参数的整体演 化规律。结果表明5个特征参数对应的动态影响因 子 $DIF_{\rm E}$, $DIF_{\rm h}$, $DIF_{\rm h}$, $DIF_{\rm H}$ 均随应变率的增 加呈现良好的线性关系,确定了其表达式。比较了 临界状态与峰值应力状态,当 ϵ 由 10⁻⁵/s提高至 10⁻²/s时, $\sigma_{\rm cr}/\sigma_{\rm p}$ 的平均值由 0.71增加至 0.91, $\epsilon_{\rm cr}/\epsilon_{\rm p}$ 的平均值由 1.41减小到 1.25;建议将临界状态作为 本构模型的最终破坏点。

(4)在试验数据分析中,未考虑试件尺寸、材料 来源、配合比和试验条件等对试验应力-应变曲线的 影响。文中本构模型预测的动态应变率范围仅限于 10⁻⁵~10⁻²/s,未考虑冲击、爆炸等更高应变率下模 型的适用性,后续将进一步开展相关的研究工作。

参考文献:

 [1] 邹笃建,刘铁军,滕军,等.混凝土柱单轴动态抗压特 性的应变率效应研究[J].振动与冲击,2012,31(2): 145-150.

Zou Dujian, Liu Tiejun, Teng Jun, et al. Strain rate effect on uniaxial dynamic compression behavior of concrete columns[J]. Journal of Vibration and Shock, 2012, 31(2): 145-150.

[2] 闫东明. 混凝土动态力学性能试验与理论研究[D].大 连:大连理工大学, 2006. Yan Dongming. Experimental and theoretical study on the dynamic properties of concrete[D]. Dalian: Dalian University of Technology, 2006.

 [3] 施林林,宋玉普,沈璐.不同应变率下大骨料及湿筛
 混凝土单轴受压试验研究[J].世界地震工程,2016, 32(2):270-276.

Shi Linlin, Song Yupu, Shen Lu. Experimental study on uniaxial compression properties of large aggregate and wet-screened concrete at different strain rates [J]. World Earthquake Engineering, 2016, 32(2): 270-276.

- [4] 肖诗云,张剑.不同应变率下混凝土受压损伤试验研究[J]. 土木工程学报,2010,43(3):40-45.
 Xiao Shiyun, Zhang Jian. Compressive damage experiment of concrete at different strain rates[J]. China Civil Engineering Journal, 2010,43(3):40-45.
- [5] 刘录良.考虑应变速率影响的混凝土试验研究与数值 分析[D].天津:河北工业大学,2012.
 Liu Luliang. Experimental research and numerical analysis of concrete under the strain rate[D]. Tianjin: Hebei University of Technology, 2012.
- [6] 白卫峰,李思蕾,管俊峰,等.再生混凝土的单轴压缩 动态力学性能试验研究[J].建筑材料学报,2022, 25(5):498-508.

Bai Weifeng, Li Silei, Guan Junfeng, et al. Dynamic mechanical properties of recycled concrete under uniaxial compression[J]. Journal of Building Materials, 2022, 25(5): 498-508.

- [7] 曾莎洁,李杰.混凝土单轴受压动力全曲线试验研究
 [J].同济大学学报(自然科学版),2013,41(1):7-10.
 Zeng Shajie, Li Jie. Experimental study on uniaxial compression behavior of concrete under dynamic loading
 [J]. Journal of Tongji University (Natural Science),2013,41(1):7-10.
- [8] Lu Dechun, Wang Guosheng, Du Xiuli, et al. A nonlinear dynamic uniaxial strength criterion that considers the ultimate dynamic strength of concrete [J]. International Journal of Impact Engineering, 2017, 103: 124-137.
- [9] JIN Liu, YU Wenxuan, DU Xiuli, et al. Meso-scale modelling of the size effect on dynamic compressive failure of concrete under different strain rates [J]. International Journal of Impact Engineering, 2019, 125: 1-12.
- [10] 孙雪,谢兴华.普通混凝土与轻集料混凝土的受压动 力性能[J].建筑材料学报,2018,21(3):376-381.
 Sun Xue, Xie Xinghua. Compressive dynamic performance of ordinary concrete and lightweight aggregate concrete[J]. Journal of Building Materials, 2018, 21 (3):376-381.
- [11] 田威,党发宁,陈厚群.动力荷载作用下混凝土破裂 特征的CT试验研究[J].地震工程与工程振动,2011, 31(1):30-34.

Tian Wei, Dang Faning, Chen Houqun. CT experimen-

tal study on failure characteristics of concrete under dynamic loading[J]. Journal of Earthquake Engineering and Engineering Vibration, 2011, 31(1): 30-34.

 [12] 刘练,霍静思,刘艳芝,等.普通混凝土落锤冲击动态 力学性能试验研究[J].铁道科学与工程学报,2018, 15(6):1415-1423.

Liu Lian, Huo Jingsi, Liu Yanzhi, et al. Experimental study on dynamic mechanical properties of ordinary concrete under drop hammer impact loading [J]. Journal of Railway Science and Engineering, 2018, 15(6): 1415-1423.

 [13] 刘传雄,李玉龙,吴子燕,等.混凝土材料的动态压缩 破坏机理及本构关系[J].振动与冲击,2011,30(5):
 1-5.

Liu Chuanxiong, Li Yulong, Wu Ziyan, et al. Failure mechanism and constitutive model of a concrete material under dynamic compressive loads[J]. Journal of Vibration and Shock, 2011, 30(5): 1-5.

- [14] Feng S W, Zhou Y, Wang Y, et al. Experimental research on the dynamic mechanical properties and damage characteristics of lightweight foamed concrete under impact loading[J]. International Journal of Impact Engineering, 2020, 140: 103558.
- [15] 张研,李廷秀,蒋林华.混凝土应变率型弹塑性损伤 本构模型[J].建筑材料学报,2014,17(3):396-400.
 Zhang Yan, Li Tingxiu, Jiang Linhua. Strain rate-dependent elastoplastic damage model for concrete[J].
 Journal of Building Materials, 2014, 17(3): 396-400.
- [16] 李杰,曾莎洁,任晓丹.混凝土动力随机损伤本构关系[J].同济大学学报(自然科学版),2014,42(12): 1783-1789.
 Li Jie, Zeng Shajie, Ren Xiaodan. A stochastic rate-de-

pendent damage model for concrete[J]. Journal of Tongji University (Natural Science), 2014, 42(12): 1783-1789.

- [17] Huang Jie, Zhang Yi, Tian Yubin, et al. Research on the dynamic mechanical properties and constitutive models of steel fiber reinforced concrete and polypropylene fiber reinforced concrete[J]. Advances in Civil Engineering, 2020, 2020: 9174692.
- [18] 张永亮,朱大勇,姚华彦,等.干燥和饱和状态下混凝 土动静态压缩性能试验研究及其本构关系[J].建筑结 构,2015,45(12):23-27.
 Zhang Yongliang, Zhu Dayong, Yao Huayan, et al. Study on dynamic and static compression performance

of concrete for dry and saturated state and its constitutive relationship[J]. Builing Structure, 2015, 45(12): 23-27.

[19] 张社荣,宋冉,王超,等.碾压混凝土的动态力学特性 分析及损伤演化本构模型建立[J].中南大学学报(自 然科学版),2019,50(1):130-138. [20] 陈伟, 彭刚, 周寒清. 不同应变速率条件下不同尺寸 混凝土单轴试验应力应变分析[J]. 水电能源科学, 2014, 32(3): 134-137.

Chen Wei, Peng Gang, Zhou Hanqing. Stress and strain analysis of concrete uniaxial test under different strain rate and different size [J]. Water Resources and Power, 2014, 32(3): 134-137.

 [21] 张明虎,刘海峰,马映昌,等.低应变率下沙漠砂混凝
 土动态力学性能及本构模型[J].应用力学学报, 2020,37(5):2160-2166.

Zhang Minghu, Liu Haifeng, Ma Yingchang, et al. The dynamic constitutive model and mechanical behaviors of desert sand concrete at low strain rate[J]. Chinese Journal of Applied Mechanics, 2020, 37(5): 2160-2166.

- [22] Krajcinovic D, Silva M A G. Statistical aspects of the continuous damage theory [J]. International Journal of Solids and Structures, 1982, 18(7): 551-562.
- [23] Li Jie, Ren Xiaodan. Stochastic damage model for concrete based on energy equivalent strain[J]. International Journal of Solids and Structures, 2009, 46 (11-12): 2407-2419.
- [24] Shi Xianzeng, Zhang Cong, Zhou Xingde. The statistical damage constitutive model of the mechanical properties of alkali-resistant glass fiber reinforced concrete[J]. Symmetry, 2020, 12(7): 1139.
- [25] 白卫峰,陈健云,胡志强,等.准脆性材料单轴拉伸破 坏全过程物理模型研究[J].岩石力学与工程学报, 2007,26(4):670-681.
 Bai Weifeng, Chen Jianyun, Hu Zhiqiang, et al. Study on physical model of complete failure process of quasibrittle materials in tension [J] Chinses Journal of Pack

brittle materials in tension [J]. Chinses Journal of Rock Mechanics and Engineering, 2007, 26(4): 670-681.

 [26] 陈健云,白卫峰.考虑动态应变率效应的混凝土单轴 拉伸统计损伤模型[J].岩石力学与工程学报,2007, 26(8):1603-1611.

Chen Jianyun, Bai Weifeng. Statistical damage model of concrete under uniaxial tension considering dynamic strain-rate effect [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(8): 1603-1611.

- [27] Bai Weifeng, Li Wenhao, Guan Junfeng, et al. Research on the mechanical properties of recycled aggregate concrete under uniaxial compression based on the statistical damage model[J]. Materials, 2020, 13(17): 3765.
- [28] Markeset G, Hillerborg A. Softening of concrete in compression—localization and size effects [J]. Cement

and Concrete Research, 1995, 25(4): 702-708.

- [29] Jansen D C, Shah S P. Effect of length on compressive strain softening of concrete [J]. Journal of Engineering Mechanics, 1997, 123(1): 25-35.
- [30] Nakamura H, Higai T. Compressive Fracture Energy and Fracture Zone Length of Concrete[M] // Modeling of Inelastic Behavior of RC Structures under Seismic Loads, ASCE, 2001:471-487.
- [31] 白以龙,汪海英,夏蒙棼,等.固体的统计细观力学一 连接多个耦合的时空尺度[J].力学进展,2006,36
 (2):286-305.
 Bai Yilong, Wang Haiying, Xia Mengfen, et al. Statistical mesomechanics of solid, linking coupled multiple space and time scales [J]. Advances in Mechanics, 2006, 36(2): 286-305.
- [32] 夏蒙棼,韩闻生,柯孚久,等.统计细观损伤力学和损伤演化诱致突变[J].力学进展,1995,25(1):1-40.
 Xia Mengfen, Han Wensheng, Ke Fujiu, et al. Statistical meso-scopic damage mechanics and damage evolution induced catastrophe [J]. Advances in Mechanics, 1995, 25(1):1-40.
- [33] 白卫峰, 沈鋆鑫, 管俊峰, 等. 基于统计损伤理论的混 凝土应力-应变行为[J]. 建筑材料学报, 2021, 24(3): 551-561.

Bai Weifeng, Shen Junxin, Guan Junfeng, et al. Stressstrain behavior of concrete based on statistical damage theory[J]. Journal of Building Materials, 2021, 24(3): 551-561.

- [34] Geel E V. Concrete behaviour in multiaxial compression: experimental research[D]. Eindhoven: Technische Universiteit Eindhoven, 1998.
- [35] 郝圣旺. 非均匀脆性介质损伤演化的一维准静态线性 失 稳 及 其 发 展 [J]. 燕山 大 学 学 报, 2011, 35(5): 459-464.

Hao Shengwang. One-dimensional damage evolution instability and its growth of heterogeneous brittle material under quasi-static loading [J]. Journal of Yanshan University, 2011, 35(5): 459-464.

- [36] 张晓君.岩石损伤统计本构模型参数及其临界敏感性 分析[J].采矿与安全工程学报,2010,27(1):45-50.
 Zhang Xiaojun. Parameters of statistical damage constitutive model for rocks and its critical sensitivity analysis
 [J]. Journal of Mining and Safety Engineering, 2010, 27(1):45-50.
- [37] 纪洪广,贾立宏,李造鼎.声发射参数的灰色尖点突 变模型及其在混凝土断裂分析中的应用[J].声学学 报,1996,21(6):935-940.

Ji Hongguang, Jia Lihong, Li Zaoding. Grey cusp catastrophe model of AE parameters and its application in fracture analysis of concrete material [J]. Acta Acustica, 1996, 21(6): 935-940.

- [38] 董毓利,谢和平,李玉寿. 砼受压全过程声发射特性 及其损伤本构模型[J]. 力学与实践, 1995, 17(4): 25-28.
- [39] 白卫峰,张树珺,管俊峰,等.混凝土正交各向异性统 计损伤本构模型研究[J].水利学报,2014,45(5): 607-618.
 Bai Weifeng, Zhang Shujun, Guan Junfeng, et al. Orthotropic statistical damage constitutive model for concrete[J]. Journal of Hydraulic Engineering, 2014, 45
- (5):607-618.
 [40] 白卫峰,刘霖艾,管俊峰,等.基于统计损伤理论的硫酸盐侵蚀混凝土本构模型研究[J].工程力学,2019,36(2):66-77.
 Bai Weifeng, Liu Linai, Guan Junfeng, et al. The constitutive model of concrete subjected to sulfate attack

based on statistical damage theory [J]. Engineering Mechanics, 2019, 36 (2): 66-77.

[41] 白卫峰,韩浩田,管俊峰,等.考虑高温劣化效应的混 凝土统计损伤本构模型研究[J].应用基础与工程科学 学报,2020,28(6):1397-1409. Bai Weifeng, Han Haotian, Guan Junfeng, et al. Statistical damage model of concrete considering the effect of high temperature degradation [J]. Journal of Basic Science and Engineering, 2020, 28(6): 1397-1409.

- [42] 党发宁,潘峰, 焦凯,等.不均匀脆性材料动强度提高机理及破坏形态研究[J].地震工程与工程振动,2015,35(3):111-118.
 Dang Faning, Pan Feng, Jiao Kai, et al. Mechanism for enhancement of dynamic strength and failure model of nonuniform brittle materials[J]. Earthquake Engineering and Engineering Dynamics, 2015, 35(3):111-118.
- [43] Li Long, Poon Chisun, Xiao Jianzhuang, et al. Effect of carbonated recycled coarse aggregate on the dynamic compressive behavior of recycled aggregate concrete [J]. Construction and Building Materials, 2017, 151: 52-62.
- [44] Xiao Jianzhuang, Li Jiabin, Zhang Ch. Mechanical properties of recycled aggregate concrete under uniaxial loading[J]. Cement and Concrete Research, 2005, 35(6): 1187-1194.

Statistical damage constitutive model of concrete under uniaxial compression considering strain rate effect

BAI Wei-feng^{1,2}, ZHANG Zhe¹, GUAN Jun-feng¹, YUAN Chen-yang^{1,2}, MA Ying^{1,2}

(1.School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China;2.Henan Provincial Hydraulic Structure Safety Engineering Research Center, Zhengzhou 450046, China)

Abstract: Based on the statistical damage theory, a statistical damage constitutive model of the concrete under uniaxial compression is established with considering the strain rate effect. Two meso-damage modes of fracture and yield are considered. The critical state is regarded as the transition point from uniform damage stage to local failure stage, which lags behind the peak stress state. Under dynamic loading, the mechanical performance in meso-structure of the concrete is changed, and the growth form, path and number of the microcracks are also significantly changed compared to the quasi-static state. As a result, the meso-damage evolution process is changed, which could be characterized by five characteristic parameters. The uniaxial dynamic compression test is conducted, and the stress-strain curves within the limits of $10^{-5}/s \sim 10^{-2}/s$ are obtained. The rationality of the model is verified by six groups of experimental data. It shows that the prediction curves are in good agreement with the test curves, and the characteristic parameters show obvious regularity with the strain rate. The model can well describe the dynamic mechanical behavior of the concrete, and establish an effective connection among the strain rate effect mechanism, the meso-damage mechanism, and the macrononlinear behavior.

Key words: concrete; uniaxial compression; constitutive model; meso-damage mechanism; strain rate effect

作者简介:白卫峰(1982—),男,博士,教授,博士生导师。E-mail:yf9906@163.com。 通讯作者:管俊峰(1980—),男,博士,教授,博士生导师。E-mail:shuaipipi88@126.com。