海上浮式风机多体系统耦合动力模型研究

李书进1,郑达成1,孔 凡2

(1. 武汉理工大学土木工程与建筑学院,湖北武汉430070;2. 合肥工业大学土木与水利工程学院,安徽合肥230009)

摘要:海上浮式风机是近年来随着海上风电的快速发展,为了捕获深海更丰富、更持久的风能而提出的一种风力发 电装置,已成为当今风能开发的主要方向。作为一种多体系统,由于海上浮式风机结构特殊,加上环境复杂,对其进 行准确的计算和分析尤为重要。本文对海上浮式风机的耦合动力模型进行了研究,建立了复杂工况下Spar型海上 浮式风机改进的14-DOF耦合动力模型,包括气动力模块、水动力模块和结构分析模块等,用于扩展其适用范围和 准确计算风机的动力响应,并通过数值仿真对所建模型进行了分析和验证。主要的改进有:不对平台和塔架的转动 角度作小量近似,扩展其适用范围;考虑角速度和欧拉角速度的换算关系,不作等化处理。此外,所建模型考虑风机 叶片扭转角对叶片变形的影响,得到了较为准确的叶片面内外响应。同时采用线性势流理论对水动力进行计算,较 之Morison方程适用性更广。仿真分析表明,本文所建模型可以更准确地计算海上浮式风机系统的动力响应,且具 有更广的适用范围。

关键词:海上浮式风机;多体系统;气动力分析;水动力分析;耦合模型
中图分类号:TK83;O313.7 文献标志码:A 文章编号:1004-4523(2024)01-0020-11
DOI:10.16385/j.cnki.issn.1004-4523.2024.01.003

引 言

风能作为一种清洁的可再生能源,近年来日益 受到世界各国的重视,在中国的能源战略中也占有 重要地位。风能蕴量巨大,积极开发和利用风力发 电对改善能源结构和环境有重要意义,是解决中国 环境污染和保障中国电力安全的重要途径之一。深 海风电相较于陆上风电和近海风电有着风力资源丰 富、风速大以及适合大规模开发等优势,已经成为当 今风能开发的主要方向^[1]。

随着水深的增加,原有传统固定式风机由于在 建造难度和费用上的急剧加大而不再适用,海上浮 式风机应运而生。与固定式风机不同,海上浮式风 机因为所处工作位置以及浮台、锚泊系统等特殊部 件的存在,整体结构和受荷环境更为复杂,成为复杂 的多体系统,在风、浪、流等多种环境荷载作用下,结 构各个部分相互耦合、相互影响,具有相对复杂的动 力运动,计算与仿真也更加困难^[23]。为保证浮式风 机安全、经济、可靠地运行,对多环境荷载作用下漂 浮于海上的风机动力耦合模型进行研究,准确计算 其系统响应十分有必要,对于海上浮式风机的应用 和发展也具有极其重要的价值和意义。 目前,海上浮式风机根据不同海域环境条件发展出了多种结构形式,主要有单浮立柱式(Spar型)、 张力腿式(TLP型)、驳船式(Barge型)和半潜式 (Semi-Sub型)等^[4],对其研究最为突出的是美国国家 可再生能源实验室(NREL)。其中,以Jonkman为代 表的NREL研究人员针对海上浮式风机进行了大量 深入的理论研究^[5],并开发了名为OpenFAST的风 机仿真分析软件。该软件包含了空气动力学分析、 流体动力学分析以及结构分析等多个计算模块,功 能强、准确度高,在世界各地得到广泛应用^[6]。

此外,为便于对浮式风机进行更深入的分析和 拓展,不少学者根据自身的研究内容和目的对浮式 风机模型进行了或简化或深入的探究,建立了多层 次、多用途的计算模型。如Stewart等^[7]基于牛顿第 一定律为不同类型的浮式风机建立了3-DOF动力学 模型,用于风机振动控制的研究;Si等^[8]基于达朗贝 尔原理建立了Spar型浮式风机的5-DOF动力学模 型,用于对其振动被动控制的设计;He等^[9]基于欧 拉-拉格朗日方程也建立了Spar型浮式风机5-DOF 动力学模型,同样用于风机的振动控制。但由于自 由度的简化,上述模型的部分参数需要利用LM算法 进行拟合,所得出的系统响应有较大的限制。为更 精准地描述浮式风机响应,Jahangiri等^[10]基于拉格朗

日方程建立了 Spar 型浮式风机的 13-DOF 模型, Yang 等^[11]则建立了 Spar 型浮式风机的 14-DOF 模 型,两者较之前考虑了平台、塔架和叶片之间的耦合 动力特性,可以更加精准地分析系统响应。不过在 这些模型中,由于认为风机在工作期间平台和塔架 转动角度不大,为简化计算,建模时对平台和塔架的 转动角度作了小量的假定。比如OpenFAST就限定 了平台和塔架的转动角度在 $\pm 0.2618 \text{ rad}(即 \pm 15^\circ)$ 之间,超过即报错误信息。但这样假定会导致变换 矩阵不再正交,因此在OpenFAST中又利用奇异值 分解对其进行了正交化处理。并且在角度小量假定 后,模型中的角速度与欧拉角速度会等化,忽略了两 者间的变换关系。这些处理对于纵、横向尺寸较大 的浮式风机,或者有较大的环境激励时,往往会产生 较大的计算误差,导致结果不够准确,甚至难以收 敛。此外,上述模型还对叶片变形进行了简化,假设 叶片的摆振向和挥舞向振动为面外和面内振动,忽 略了叶片自身扭转角的影响,与实际的模态振型有 一定出入,得到的叶片变形与实际值偏差也较大。 我们的研究表明,上述处理对于浮式风机常态运行 时的分析具有足够的精度,但对于非常态情形,比如 较大幅度的风浪激励,或者对风机进行振动控制、疲 劳和可靠性分析时就会带来一定的误差,难以适用。

1 模型建立

海上浮式风机一般由风机、塔架、浮式基础和系 泊系统等四部分构成,是一个复杂的多体系统,本节 建立14-DOF的Spar型海上浮式风机全耦合动力模型,包括气动力、水动力和结构动力三个模块,并作部分改进。同样,先对该模型进行一定的介绍和简化:

(1)假设平台、机舱和轮毂为刚体;塔架、叶片为 弹性悬臂梁,忽略它们的轴向变形;系泊系统采用准 静态法分析,即忽略系泊阻尼和惯性作用的影响。

(2)不考虑传动系和发电机的影响,转子以恒定速度旋转,这些部件的重量集成到机舱质量中。假设转子的转速为 Ω ,则第j个叶片的方位角 $\phi_j(t)$ 可表示为^[12]:

$$\psi_j(t) = \Omega t + \frac{2\pi}{3} (j-1), \quad j=1,2,3 \quad (1)$$

(3)外部激励仅考虑气动力、水动力以及静水荷载,忽略结冰、海流、尾迹湍流和闪电的影响。气动力由入流风与叶片的相对运动产生,不考虑风对塔架的影响;水动力由平台和流体的相对运动产生;静水荷载包括浮力和静水回复力。

根据以上假定,将 Spar 型海上浮式风机简化为 图 1 所示的 14-DOF 耦合模型。其中, q_1 , q_2 , q_3 , q_4 , q_5 和 q_6 分别对应平台的横荡、纵荡、垂荡、横摇、纵 摇和艏摇; q_7 和 q_8 分别对应塔架的纵向和横向振动; q_9 , q_{10} 和 q_{11} 分别对应三个叶片的摆振向振动; q_{12} , q_{13} 和 q_{14} 分别对应三个叶片的挥舞向振动。

1.1 坐标系建立

为描述 Spar 型海上浮式风机系统的运动,建立 如图 2 所示的坐标系,先在局部坐标系定义各部件

图 2 Spar 型海上浮式风机坐标系示意图 Fig. 2 Schematic diagram of coordinate systems of the Spar FOWT

属性,然后再返回惯性坐标系建立运动方程。图中 z₁, z₂和z₃为惯性坐标系,用于定义平台六自由度; 局部坐标系包括平台/塔基坐标系 a₁, a₂和a₃,用于 定义塔架振动自由度;倾轴坐标系为 c₁, c₂和c₃;塔 顶/机舱坐标系为 d₁, d₂和d₃;叶片方位角坐标系为 e₁, e₂和e₃;轮毂坐标系为 g₁', g₂和g₃;叶偏角坐标系为 i₁', i₂和i₃';用于定义叶片振动自由度的叶片坐标系为 j₁', j₂和j₃'。

当参考坐标系 xyz 依次绕 $x, y\pi z$ 轴转动欧拉角 $\Theta = \{\phi, \theta, \phi\}, 变换后的坐标系 XYZ 可表示为:$

$$\begin{cases} X \\ Y \\ Z \end{cases} = R \begin{cases} x \\ y \\ z \end{cases} = \\ \begin{bmatrix} c_{\theta}c_{\phi} & c_{\phi}s_{\phi} + s_{\phi}s_{\theta}c_{\phi} & s_{\phi}s_{\phi} - c_{\phi}s_{\theta}c_{\phi} \\ -c_{\theta}s_{\phi} & c_{\phi}c_{\phi} - s_{\phi}s_{\theta}s_{\phi} & s_{\phi}c_{\phi} + c_{\phi}s_{\theta}s_{\phi} \end{bmatrix} \begin{cases} x \\ y \\ z \end{cases}$$
(2)

式中 $s_{(\cdot)} = \sin(\cdot); c_{(\cdot)} = \cos(\cdot); R$ 为坐标旋转矩阵。

为简化计算,考虑风机在常态运行时其平台和 塔架的转动角度不大,以往模型基本上通过假定风 机的转动角度为小量来对方程进行简化处理以提高 计算效率,这样就有 $\cos\theta \approx 1$, $\sin\theta \approx \theta$ 或 0, 1 – $\cos\theta \approx \theta^2/2$ 等。不过这样简化会导致旋转矩阵 *R* 不再正交,需要另对其进行正交化处理。而且在建 立运动方程的过程中,计算动能所需的角速度与欧 拉角速度 $\dot{\Theta} = \{\dot{\phi}, \dot{\theta}, \dot{\phi}\}$ 存在一定的换算关系,即^[13]

$$\boldsymbol{\omega} = T^{-1} \begin{cases} \dot{\boldsymbol{\phi}} \\ \dot{\boldsymbol{\phi}} \\ \dot{\boldsymbol{\psi}} \end{cases} = \begin{bmatrix} 1 & 0 & s_{\boldsymbol{\theta}} \\ 0 & c_{\boldsymbol{\phi}} & -s_{\boldsymbol{\phi}}c_{\boldsymbol{\theta}} \\ 0 & s_{\boldsymbol{\phi}} & c_{\boldsymbol{\phi}}c_{\boldsymbol{\theta}} \end{bmatrix} \begin{vmatrix} \dot{\boldsymbol{\phi}} \\ \dot{\boldsymbol{\theta}} \\ \dot{\boldsymbol{\phi}} \end{vmatrix}$$
(3)

式中 ω 为角速度; T^{-1} 为欧拉角速度到角速度的变

换矩阵。但角度小量假定后变换矩阵 T⁻¹成为单位 阵,即将角速度和欧拉角速度作等化处理会给部分 结果带来一定的误差。

为解决小量假定产生的问题,本文将不对模型 中的角度进行小量近似,而采用严格的旋转矩阵和 变换矩阵描述海上浮式风机复杂多体系统的运动, 同时考虑角速度和欧拉角速度的换算关系,对浮式 风机的响应进行精准描述。

1.2 动力方程推导

利用欧拉-拉格朗日方程推导Spar型海上浮式 风机运动方程:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial T}{\partial \dot{q}_i} \right) - \left(\frac{\partial T}{\partial q_i} \right) + \left(\frac{\partial V}{\partial q_i} \right) = F_i^{\mathrm{a}} + F_i^{\mathrm{hs}} + F_i^{\mathrm{hd}} + F_i^{\mathrm{m}} - \sum_{j=1}^{14} C_{ij}^{\mathrm{s}} q_j, \quad i = 1, 2, \cdots, 14$$
(4)

式中 T为系统动能;V为系统势能; q_i , q_j 为广义坐标; \dot{q}_i 为 q_i 对时间求导; F_i^{a} , F_i^{bs} , F_i^{bd} 和 F_i^{m} 分别为 q_i 对应的气动力、静水荷载、水动力和系泊荷载; C_{ij}^{s} 为系统结构阻尼。

1.2.1 系统动能

系统动能T由平台、塔架、机舱、轮毂和叶片的 平动动能,以及平台、机舱、发电机和轮毂的转动动 能组成。速度矢量v(t)为位置矢量r(t)对时间的 导数,即

$$\boldsymbol{v}(t) = \frac{\mathrm{d}\boldsymbol{r}(t)}{\mathrm{d}t} \tag{5}$$

为了得到精确的叶片面内外变形,本文考虑叶 片自身扭转角对叶片变形的影响,这样第*j*叶片的 位置矢量*r*_{bi}(*r*)为:

$$\boldsymbol{r}_{bj}(r) = \begin{cases} q_1 \\ q_2 \\ q_3 \end{cases} + \boldsymbol{R}_p^{\mathrm{T}} \begin{cases} \boldsymbol{u}_{\mathrm{FA}}(h_t) \\ \boldsymbol{u}_{\mathrm{SS}}(h_t) \\ h_b + h_t - \boldsymbol{v}_t(h_t) \end{cases} + \\ \boldsymbol{R}_t^{\mathrm{T}} \begin{cases} 0 \\ 0 \\ h_s \end{cases} + \boldsymbol{R}_s^{\mathrm{T}} \begin{cases} d_h \\ 0 \\ 0 \end{cases} + \boldsymbol{R}_{aj}^{\mathrm{T}} \boldsymbol{R}_c^{\mathrm{T}} \begin{cases} 0 \\ 0 \\ r_h \end{cases} + \\ \begin{cases} u_{Fj}(r) \\ u_{Ej}(r) \\ r - \boldsymbol{v}_{bj}(r) \end{cases} \end{pmatrix} \end{pmatrix} \end{pmatrix}$$

$$(6)$$

式中

$$\begin{cases} u_{\rm FA}(h) = \varphi_{\rm FA}(h) q_7 \\ u_{\rm SS}(h) = \varphi_{\rm SS}(h) q_8 \end{cases}$$
(7)

$$\begin{cases} u_{\rm Fj}(r) = \phi_{\rm F}(r) q_{8+j} + \phi_{\rm E}(r) q_{11+j} \\ u_{\rm Ej}(r) = \psi_{\rm F}(r) q_{8+j} + \psi_{\rm E}(r) q_{11+j} \end{cases}, \ j = 1, 2, 3 (8)$$

$$v_{t}(h) = \frac{1}{2} \int_{0}^{h} \left[\left(\frac{\mathrm{d}\varphi_{\mathrm{FA}}}{\mathrm{d}h'} \right)^{2} q_{7}^{2} + \left(\frac{\mathrm{d}\varphi_{\mathrm{SS}}}{\mathrm{d}h'} \right)^{2} q_{8}^{2} \right] \mathrm{d}h' \quad (9)$$

$$v_{bj}(r) = \frac{1}{2} \int_{0}^{r} \left[\left(\frac{\mathrm{d}\phi_{\mathrm{F}}}{\mathrm{d}r'} \right)^{2} + \left(\frac{\mathrm{d}\psi_{\mathrm{F}}}{\mathrm{d}r'} \right)^{2} \right] q_{8+j}^{2} + \left[\left(\frac{\mathrm{d}\phi_{\mathrm{F}}}{\mathrm{d}r'} \right)^{2} + \left(\frac{\mathrm{d}\psi_{\mathrm{F}}}{\mathrm{d}r'} \right)^{2} \right] q_{11+j}^{2} + \left(\frac{\mathrm{d}\phi_{\mathrm{F}}}{\mathrm{d}r'} \frac{\mathrm{d}\phi_{\mathrm{F}}}{\mathrm{d}r'} + \frac{\mathrm{d}\psi_{\mathrm{F}}}{\mathrm{d}r'} \frac{\mathrm{d}\psi_{\mathrm{F}}}{\mathrm{d}r'} \frac{\mathrm{d}\psi_{\mathrm{F}}}{\mathrm{d}r'} \right) q_{8+j} q_{11+j} \mathrm{d}r'$$

$$(10)$$

$$\begin{cases} \theta_{\rm SS} = -\frac{\mathrm{d}\varphi_{\rm SS}}{\mathrm{d}h} \Big|_{h=h_{\rm I}} q_7 \\ \theta_{\rm FA} = \frac{\mathrm{d}\varphi_{\rm FA}}{\mathrm{d}h} \Big|_{h=h_{\rm I}} q_8 \end{cases}$$
(11)

$$\begin{cases} \phi_{\rm F}(r) = \int_{0}^{r} \left\{ \int_{0}^{r'} \frac{d^{2} \varphi_{\rm F}(r'')}{dr''^{2}} \cos\left[\theta_{\rm S}(r'')\right] dr'' \right\} dr' \\ \phi_{\rm E}(r) = \int_{0}^{r} \left\{ \int_{0}^{r'} \frac{d^{2} \varphi_{\rm E}(r'')}{dr''^{2}} \sin\left[\theta_{\rm S}(r'')\right] dr'' \right\} dr' \\ \begin{cases} \phi_{\rm F}(r) = -\int_{0}^{r} \left\{ \int_{0}^{r'} \frac{d^{2} \varphi_{\rm F}(r'')}{dr''^{2}} \sin\left[\theta_{\rm S}(r'')\right] dr'' \right\} dr' \\ \phi_{\rm E}(r) = \int_{0}^{r} \left\{ \int_{0}^{r'} \frac{d^{2} \varphi_{\rm E}(r'')}{dr''^{2}} \cos\left[\theta_{\rm S}(r'')\right] dr'' \right\} dr' \end{cases}$$
(12)

式 中 $R_{p}, R_{t}, R_{s}, R_{aj} \pi R_{c}$ 分 别 为 平 台 转 角 { q_{4}, q_{5}, q_{6} }、塔 架 转 角 { $\theta_{SS}, \theta_{FA}, 0$ }、倾 轴 转 角 { $0, \theta_{s}, 0$ }、叶 片 方 位 角 { $\psi_{j}, 0, 0$ } 和 叶 片 预 弯 角 { $0, \theta_{c}, 0$ }的旋转坐标矩阵; (\cdot)^T 为矩阵转置; $u_{FA}(h) \pi u_{SS}(h)$ 分别为沿塔架高度 h 纵向和侧向的 振动位移; $\varphi_{FA}(h) \pi \varphi_{SS}(h)$ 分别为塔架纵向和横向 第一阶振型; θ_{ss} 和 θ_{FA} 分别为塔架发生纵向和横向 振动时,塔架上部结构产生的额外转动; h_b, h_i, h_s, d_h 和 r_h 分别为静水面至塔基高度、塔架高 度、倾轴高度、倾轴至轮毂中心距离和轮毂半径; $u_{Fj}(r)$ 和 $u_{Ej}(r)$ 分别为沿叶片半径r面外和面内的振 动位移; $\varphi_F(r)$ 和 $\varphi_E(r)$ 分别为叶片摆振向和挥舞向 第一阶振型; $\phi_F(r)$ 和 $\phi_E(r)$ 为考虑叶片扭转角后叶 片的面外振型; $\phi_F(r)$ 和 $\phi_E(r)$ 为考虑叶片扭转角后 叶片的面内振型; $\theta_s(r)$ 为叶片扭转角; $v_t(h)$ 和 $v_{bj}(r)$ 分别为塔架和叶片相对塔底和叶片根部的轴向 挠度。

轮毂角速度矢量*ω*_h为:

$$\boldsymbol{\omega}_{\mathrm{h}} = \boldsymbol{T}_{\mathrm{p}}^{-1} \begin{cases} \dot{q}_{\mathrm{a}} \\ \dot{q}_{\mathrm{5}} \\ \dot{q}_{\mathrm{6}} \end{cases} + \boldsymbol{R}_{\mathrm{p}}^{\mathrm{T}} \boldsymbol{T}_{\mathrm{t}}^{-1} \begin{cases} \dot{\boldsymbol{\theta}}_{\mathrm{SS}} \\ \dot{\boldsymbol{\theta}}_{\mathrm{FA}} \\ 0 \end{cases} + \boldsymbol{R}_{\mathrm{p}}^{\mathrm{T}} \boldsymbol{R}_{\mathrm{t}}^{\mathrm{T}} \boldsymbol{R}_{\mathrm{s}}^{\mathrm{T}} \begin{cases} \boldsymbol{\Omega} \\ 0 \\ 0 \end{cases}$$
(14)

式中 $T_{p}^{-1} \pi T_{t}^{-1} \beta$ 别为平台和塔架的欧拉角速度 到角速度的变换矩阵。

这样,系统动能T可以表示为:

$$T = \frac{1}{2} m_{\mathrm{p}} \boldsymbol{v}_{\mathrm{p}}^{\mathrm{T}} \boldsymbol{v}_{\mathrm{p}} + \frac{1}{2} \boldsymbol{\omega}_{\mathrm{p}}^{\mathrm{T}} \boldsymbol{J}_{\mathrm{p}} \boldsymbol{\omega}_{\mathrm{p}} + \frac{1}{2} \int_{0}^{h_{\mathrm{t}}} \mu_{\mathrm{t}}(h) \boldsymbol{v}_{\mathrm{t}}^{\mathrm{T}} \boldsymbol{v}_{\mathrm{t}} \mathrm{d}h + \frac{1}{2} m_{\mathrm{n}} \boldsymbol{v}_{\mathrm{n}}^{\mathrm{T}} \boldsymbol{v}_{\mathrm{n}} + \frac{1}{2} \boldsymbol{\omega}_{\mathrm{n}}^{\mathrm{T}} \boldsymbol{J}_{\mathrm{n}} \boldsymbol{\omega}_{\mathrm{n}} + \frac{1}{2} \boldsymbol{\omega}_{\mathrm{g}}^{\mathrm{T}} \boldsymbol{J}_{\mathrm{g}} \boldsymbol{\omega}_{\mathrm{g}} + \frac{1}{2} m_{\mathrm{h}} \boldsymbol{v}_{\mathrm{h}}^{\mathrm{T}} \boldsymbol{v}_{\mathrm{h}} + \frac{1}{2} \boldsymbol{\omega}_{\mathrm{h}}^{\mathrm{T}} \boldsymbol{J}_{\mathrm{h}} \boldsymbol{\omega}_{\mathrm{h}} + \frac{1}{2} \int_{0}^{r_{\mathrm{b}}} \mu_{\mathrm{b}}(r) \boldsymbol{v}_{\mathrm{b}j}^{\mathrm{T}} \boldsymbol{v}_{\mathrm{b}j} \mathrm{d}r (15)$$

式中 $m_{\rm p}, m_{\rm n} \alpha m_{\rm h} \beta N \beta$ 平台、机舱和轮毂的质量; $\mu_{\rm t}(h) \alpha \mu_{\rm b}(r) \beta N \beta$ 塔架和叶片的分布质量; $J_{\rm p}, J_{\rm n}, J_{\rm g} \alpha J_{\rm h} \beta N \beta$ 平台、机舱、发电机和轮毂的转动惯量; $v_{\rm p}, v_{\rm t}, v_{\rm n}, v_{\rm h} \alpha v_{\rm b} \beta N \beta$ 平台、塔架、机舱、轮毂和叶片的速度矢量; $\omega_{\rm p}, \omega_{\rm n}, \omega_{\rm g} \alpha \omega_{\rm h} \beta N \beta$ 为平台、机舱、发电机和轮毂的角速度矢量; $r_{\rm b}$ 为叶片半径。

限于篇幅,文中只推导了叶片的速度矢量(式 (6))和轮毂的角速度矢量(式(14)),其他矢量可类 似推导出。

1.2.2 系统势能

系统势能 V 由应变势能 V_{beam} 和重力势能 V_{Gravity} 组成,可分别表示为^[14]:

$$V = V_{\text{beam}} + V_{\text{Gravity}}$$
(16)
$$V_{\text{beam}} = \frac{1}{2} \int_{0}^{h} EI_{\text{I}}(h) \left[\left(\frac{d^{2} \varphi_{\text{FA}}(h)}{dh^{2}} \right)^{2} \dot{q}_{7}^{2} + \left(\frac{d^{2} \varphi_{\text{SS}}(h)}{dh^{2}} \right)^{2} \dot{q}_{8}^{2} \right] dh + \frac{1}{2} \int_{0}^{h} \left[EI_{\text{F}}(r) \left(\frac{d^{2} \varphi_{\text{F}}(r)}{dr^{2}} \right)^{2} \dot{q}_{8+j}^{2} + EI_{\text{E}}(r) \left(\frac{d^{2} \varphi_{\text{E}}(r)}{dr^{2}} \right)^{2} \dot{q}_{11+j}^{2} \right] dr$$
(17)

$$V_{\text{Gravity}} = g \left(m_{\text{p}} \boldsymbol{r}_{\text{p}} + \int_{0}^{h_{\text{t}}} \mu_{\text{t}}(h) \boldsymbol{r}_{\text{t}}(h) dh + m_{\text{n}} \boldsymbol{r}_{\text{n}} + m_{\text{h}} \boldsymbol{r}_{\text{h}} + \int_{0}^{r_{\text{b}}} \mu_{\text{b}}(r) \boldsymbol{r}_{\text{bj}}(r) dr \right) \boldsymbol{\cdot} \boldsymbol{z}_{3}$$
(18)

式中 $EI_{t}(h)$, $EI_{F}(r)$ 和 $EI_{E}(r)$ 分别为塔架分布抗 侧刚度、叶片摆振向和挥舞向的分布刚度; V_{Gravity} 为 平台、塔架、机舱、轮毂和叶片在惯性坐标系中的 z_{3} 分量; $r_{bf}(r)$ 表示叶片沿叶片半径 r_{b} 的分布函数; r_{p} , r_{t} , r_{n} 和 r_{h} 分别为平台、塔架、机舱和轮毂的位置 矢量, 具体求解类似式(6)。

1.2.3 系统阻尼

塔架沿纵向阻尼 c_{FA} 和沿侧向阻尼 c_{ss},以及叶 片面外阻尼 c_{Fj}和面内阻尼 c_{Ej}分别为:

$$\begin{cases} c_{\rm FA} = 2\zeta_{\rm t} \cdot \sqrt{\int_{0}^{h_{\rm t}} \mu_{\rm t} \varphi_{\rm FA}^{2} dh} \cdot \sqrt{\int_{0}^{h_{\rm t}} EI_{\rm t} \left(\frac{d^{2} \varphi_{\rm FA}}{dh^{2}}\right)^{2}} dh \\ c_{\rm SS} = 2\zeta_{\rm t} \cdot \sqrt{\int_{0}^{h_{\rm t}} \mu_{\rm t} \varphi_{\rm SS}^{2} dh} \cdot \sqrt{\int_{0}^{h_{\rm t}} EI_{\rm t} \left(\frac{d^{2} \varphi_{\rm SS}}{dh^{2}}\right)^{2}} dh \\ \end{cases}$$
(19)
$$\begin{cases} c_{\rm FJ} = 2\zeta_{\rm b} \cdot \sqrt{\int_{0}^{r_{\rm b}} \mu_{\rm b} \varphi_{\rm F}^{2} dr} \cdot \sqrt{\int_{0}^{r_{\rm b}} EI_{\rm F} \left(\frac{d^{2} \varphi_{\rm F}}{dr^{2}}\right)^{2}} dr \\ c_{\rm EJ} = 2\zeta_{\rm b} \cdot \sqrt{\int_{0}^{r_{\rm b}} \mu_{\rm b} \varphi_{\rm F}^{2} dr} \cdot \sqrt{\int_{0}^{r_{\rm b}} EI_{\rm F} \left(\frac{d^{2} \varphi_{\rm F}}{dr^{2}}\right)^{2}} dr \end{cases}$$
(20)

式中 ζ_{1} 为塔架阻尼比; ζ_{b} 为叶片阻尼比。

将公式(5)~(20)所得的系统动、势能等参数代 入公式(4),即得到改进后的14-DOF Spar型海上浮 式风机全耦合动力模型。

2 荷载分析

2.1 系泊力

系泊系统采用 Jonkman^[15]提出的准静态法进行

$$F_{i}^{W} = \sqrt{2} \sum_{n=0}^{N-1} \left(S_{\zeta}^{1\text{-sided}}(\omega_{n}) \Delta \omega \right)^{\frac{1}{2}} X_{i}(\omega_{n},\beta) \exp\left\{ j \left[\omega_{n}t + \phi_{n} - k(\omega_{n}) \left(X \cos\beta + Y \sin\beta \right) \right] \right\}$$
(23)

由下式 $\zeta(t, X, Y)$ 乘以绕射力传递函数 $X_i(\omega_n, \beta)$ 得到。

$$\zeta(t, X, Y) = \sqrt{2} \sum_{n=0}^{N-1} \left(S_{\zeta}^{1\text{-sided}}(\omega_n) \Delta \omega \right)^{\frac{1}{2}} \exp\left\{ j \left[\omega_n t + \phi_n - k(\omega_n) \left(X \cos \beta + Y \sin \beta \right) \right] \right\}$$
(24)

 F_i^{D} 为黏性阻力,可对分布黏性阻力d F_i^{D} 积分得到。

$$dF_{i}^{D}(t,z) = \frac{1}{2} C_{D} \rho(Ddz) (v_{f,i} - v_{s,i}) \sqrt{(v_{f,1} - v_{s,1})^{2} + (v_{f,2} - v_{s,2})^{2}} , i = 1, 2$$
(25)

式中 $A_{ij}(\omega)$ 为附加质量矩阵; F_i^w 为波浪绕射力; $\zeta(t, X, Y)$ 为服从线性波理论的浪高时程,可利用谱 表现法^[19]对随机波浪进行数值模拟; $S_{\zeta}^{1-sided}(\omega_n)$ 为单 侧波浪功率谱,可采用 JONSWAP 谱; ϕ_n 为[0,2 π] 间分布的独立随机相位角; $k(\omega_n)$ 为波数; β 为浪向 角; $X_i(\omega_n, \beta)$ 为绕射力传递函数;式(22)倒数第二项 计算。假设系泊在任意时刻都处于静态平衡,利用 悬链线方程得出各个时刻系泊各位置的张力,具体 推导过程可参考文献[15-16]。该方法考虑了系泊 系统的非线性,忽略了系泊阻尼和惯性的影响,计算 表明这样处理对系统响应影响很小,满足本文要 求^[15,17]。不过,为了简化系泊与平台之间的三角连 接,需额外增加平台偏航刚度 kyo

2.2 静水荷载

Spar型海上浮式风机所受的静水荷载可表示为:

$$F_{i}^{\rm hs} = \rho g V_{0} \delta_{i3} - \sum_{j=1}^{14} C_{ij}^{\rm hs} q_{j}$$
(21)

式中 ρ为海水密度;g为重力加速度;V₀为平台 静止时的排水量;δ_{ij}为克罗内克函数;C^{hs}为线性 静水回复矩阵,表征触水面积和浮心位置变化的 影响。

2.3 水动力

对于与入射波波长相比尺度较小的Spar型浮 式平台,波浪荷载以拖拽力和惯性力为主,大多数的 研究都是采用 Morison 方程^[18]来计算,不过该方法 没有给出竖向波浪力的计算公式,尽管后来 Dinh 等^[18]和 Jahangiri等^[10]对其进行改进,给出了竖向波 浪力的计算方法,但对于浮式平台垂荡方向的响应 计算还是有一定误差。这里与 OpenFAST 类似,将 Jonkman^[15]提出的线性势流理论和 Morison 方程相 结合来计算本模型的水动力,其中,利用势流理论计 算绕射力和辐射力,利用 Morison 方程计算黏性阻 力,则水动力可表示为:

$$F_{i}^{\rm hd} = -A_{ij}(\omega)\ddot{q}_{j} + F_{i}^{\rm W} - \int_{0}^{t} K_{ij}(t-\tau)\dot{q}_{j}(\tau)d\tau + F_{i}^{\rm D}$$
(22)

为辐射力,表征水动力的附加质量和阻尼; K_{ij} 表示 由j方向的单位速度引起的i方向的水动力; $F_i^{\rm D}$ 为黏 性阻力; $C_{\rm D}$ 为水平阻力系数, $C_{\rm D}$ =0.6;D为平台直 径; $v_{i,i}$ 为流体速度; $v_{s,i}$ 为平台高度z处的速度。

不过 Jonkman^[20] 指出上述计算不能较好地概括 平台的水动力阻尼,因此给出了额外的线性阻尼 *B_{ii}*。

2.4 气动力

采用叶素动量理论^[11]计算叶片气动力。根据二 维空气动力学,叶素段速度及作用力如图3所示。图 中 φ 为入流角; $V_{rel,x}$, $V_{rel,y}$ 和 V_{rel} 为入流风与叶片的相 对速度; $a\pi a'$ 分别为轴向和切向诱导因子;a为攻 角; θ_p 为桨距角; θ 为叶片扭转角;c为叶片弦长; $p_1\pi p_p$ 分别为叶片升力和阻力; $p_x\pi p_y$ 分别为叶片法 向力和切向力,其中切向力 p_y 的方向与y轴相反。

Fig. 3 Schematic diagram of velocity and force of blade element segment

根据图3可知:

$$\tan \varphi = \frac{V_{\text{rel},x}(1+a)}{V_{\text{rel},y}(1-a')} \tag{26}$$

轴向诱导因子a和切向诱导因子a'可分别表示为:

$$a = \left[1 + \frac{8F\pi r \sin^2 \varphi}{Bc \left(C_1 \cos \varphi + C_d \sin \varphi\right)}\right]^{-1} \quad (27)$$

$$a' = \left[-1 + \frac{8F\pi r \sin\varphi\cos\varphi}{Bc(C_1\sin\varphi - C_d\cos\varphi)} \right]^{-1} (28)$$

式中 r为叶素段半径;B为叶片数;c为叶素段弦 长;C₁和C_d分别为升力系数和阻力系数;F为叶尖损 失因子F_{tip}和轮毂损失因子F_{hub}的乘积,即:

$$F = F_{tip} \cdot F_{hub} = \frac{2}{\pi} \arccos\left(e^{-\frac{B}{2}\frac{r_{b}-r}{r\sin\varphi}}\right) \cdot \frac{2}{\pi} \arccos\left(e^{-\frac{B}{2}\frac{r-r_{b}}{r_{b}\sin\varphi}}\right)$$
(29)

Buhl^[21]对该模型进行了修正,提出当轴向诱导因子a > 0.4时,推力系数 $C_{\rm T}$ 及轴向诱导因子a要改写成:

$$C_{\rm T} = \frac{8}{9} + \left(4F - \frac{40}{9}\right)a + \left(\frac{50}{9} - 4F\right)a^2 \quad (30)$$
$$a = \frac{18F - 20 - 3\sqrt{C_{\rm T}(50 - 36F) + 12F(3F - 4)}}{36F - 50}$$

(31)

叶素段法向力p_x和切向力p_y的表达式分别为:

$$p_x = \frac{1}{2} \rho V_{\rm rel}^2 c \left(C_1 \cos \phi + C_{\rm d} \sin \phi \right) \qquad (32)$$

$$p_{y} = \frac{1}{2} \rho V_{\rm rel}^{2} c \left(C_{\rm l} \sin \phi - C_{\rm d} \cos \phi \right) \qquad (33)$$

3 数值分析与验证

本文以文献[20]中NREL给出的OC3-Hywind Spar型浮式平台搭载5MW基准风力发电机为研究 对象,对建立的耦合动力模型进行数值分析,并与 OpenFAST计算结果进行对比,验证所建模型的准 确性。平台和风机的主要参数如表1所示,详细参 数见文献[20,22]。

	表1 算例风机主要参数
Tab. 1	Main parameters of OC3-Hywind Spar FOWT

部位	参数	数值
	额定功率/MW	5
首体	轮毂高度/m	90
心冲	额定风速/(m·s ⁻¹)	11.4
	额定转子转速/(r•min ⁻¹)	12.1
	质量/kg	17740
叶片	长度/m	61.5
	阻尼比/%	0.477465
	轮毂质量/kg	56780
机舱	轮毂直径/m	3
轮毂	机舱质量/kg	240000
	机舱质心位置/m	[1.9, 0, 1.75]
	质量/kg	249718
塔架	高度/m	77.6
	阻尼比/%	1
	质量/kg	7466330
运公	质心位置/m	[0,0,89.9155]
行口	橫摇惯性矩(纵摇)/(kg•m²)	4229230000
	艏摇惯性矩/(kg·m²)	164230000

3.1 动力特性

通过所建模型计算分析对象在静水无风时各方向的自由振动,可得系统各自由度的固有频率见表2,并与OpenFAST结果进行比较。可以看出两者几乎一致,表明本文所建耦合模型可以准确表征浮式风机的动力特性。

3.2 响应分析

3.2.1 小角度时的自由振动及与 OpenFAST 结果 对比

选取风机在静水无风、转子转速=0、初始位移 $q_R, q_P, q_Y = 5^\circ$ 条件下的自由振动进行计算并与 OpenFAST结果进行对比分析。结果表明,两者除 少量方向略有差别外(下节讨论),其他绝大部分都 吻合得非常好,部分对比见图4,验证了小角度下所 建模型的准确性。

3.2.2 水动力作用下的响应

为验证本模型水动力模块的准确性,对耦合模

表 2 所建耦合模型和 OpenFAST 固有频率对比

Tab. 2Comparisons of natural frequencies of coupled model and OpenFAST					
白山座	固有频	21 关 / 1/			
日田及	所建耦合模型	OpenFAST	庆左/ 70		
平台横荡	0.0083	0.0083	0.00		
平台纵荡	0.0083	0.0083	0.00		
平台垂荡	0.0317	0.0317	0.00		
平台横摇	0.0333	0.0333	0.00		
平台纵摇	0.0333	0.0333	0.00		
平台艏摇	0.1217	0.1217	0.00		
塔架纵向振动	0.4683	0.4717	0.73		
塔架横向振动	0.4700	0.4750	1.06		
叶片面外振动(1st/2nd/3rd)	0.7083/0.6800/0.6783	0.7066/0.6766/0.6766	0.24/0.50/0.25		
叶片面内振动(1st/2nd/3rd)	1.1466/1.0933/1.1466	1.1450/1.0916/1.1466	0.14/0.16/0.00		

型仅在周期为8.1 s、波高为2.44 m的规则波作用 下的动力反应进行计算,通过与OpenFAST结果 对比发现各方向响应吻合良好,验证了本模块的准 确性。图5列出了部分对比结果,可以看出结果基 本一致。另外,为探讨本模型水动力模块与传统 Morison方程的异同,图中同时给出了采用Morison 方程的计算结果。对比发现,采用了线性势流理论 的本模型计算结果与OpenFAST结果非常吻合, 而利用 Morison方程的计算结果则在平台垂荡方 向与OpenFAST结果有较大的误差(见图5(b)), 其他响应基本吻合,表明了 Morison方程的局 限性。 3.2.3 气动力作用下的响应

对耦合模型仅在转子转速 Ω =12.1 r/min、轮 载高度处风速 V_{hub} =11.4 m/s、幂律指数 α =0.14 的定常风作用下的动力反应进行计算,通过与 OpenFAST结果对比发现各方向响应吻合良好,部 分对比见图 6,验证了本模型气动力模块的准 确性。

3.2.4 风浪联合作用下的响应

给风机同时加以定常风(转子转速 Ω =12.1 r/min、 轮毂高度处风速 V_{hub} =11.4 m/s、幂律指数 α =0.14)和 规则波(周期T=8.1 s、波高H=2.44 m)作用,探讨浮 式风机在风浪联合作用下的反应。计算并通过与 OpenFAST结果对比表明,采用本文各模块能得到

Fig. 6 Comparisons of the model response under steady wind with $\Omega = 12.1 \text{ r/min}$, $V_{\text{hub}} = 11.4 \text{ m/s}$, $\alpha = 0.14$

浮式风机在风浪联合作用下的准确反应,特别是在 叶片变形对响应影响的处理方面。

图 7 列出了部分响应在三种计算方式下的时程对比,包括考虑叶片自身扭转角影响的本文模型、OpenFAST以及忽略叶片自身扭转角的影响, 假定叶片的摆振向和挥舞向振动为面外和面内振 动的耦合模型。对比发现,忽略叶片扭转角对叶片 变形的影响会对叶片面内振动造成非常大的误差 (见图7(f));而考虑叶片自身扭转角影响后,系统 各个响应与OpenFAST结果基本吻合,可见叶片 扭转角对叶片变形的影响不可忽视,同时也反映了 本模型的准确性。

Fig. 7 Comparisons of the model response under combined action of wind and wave

3.3 角度小量假定影响分析

图 8 为所建模型计算得到的风机在平台纵摇 角度分别为 5°, 10°, 15°和 20°时的部分方向自由振 动响应时程及与 OpenFAST 结果的计算对比,由 于 OpenFAST 限 定 了 计 算 最 大 允 许 角 度 在 ±0.2618 rad(即±15°)之间,图中只给出了 5°, 10° 及 15°的结果。可以看出,在小角度比如 5°时,所建 模型的计算结果与 OpenFAST 结果几乎完全吻 合;但随着平台转角的增大,所建模型与 Open-FAST 结果开始出现误差,且误差随着角度的增大 有逐渐变大的趋势(见局部放大图)。表明角度的 小量假定会对风机计算结果带来影响,尽管误差在 可接受范围内;同时也说明本文所建模型不仅适用 于小角度情况,也能对大转角情况进行计算,具有 更广的应用范围。

另外,在图4所示的模型各体系自由振动响应 对比中可以发现,大多数计算结果与OpenFAST给 出的结果吻合,如平台的横荡、纵荡、垂荡以及横摇 和纵摇等,但也有部分存在或多或少的差异,比如模 型塔架的振动虽然与OpenFAST基本吻合,但存有 少许的频率差,见图4(d);同样,如图4(c)所示,模 型平台的艏摇与OpenFAST相比振幅相差不大,但 振动频率存在较大的误差,达到14.1%。分析发现, 造成这种现象的主要原因是OpenFAST利用角度小 量近似简化了平台转角和塔架转角的坐标转换,以 及直接将角速度矢量当作欧拉角速度,没有考虑两 者间的转换关系。特别是当平台横摇和纵摇的角度 图 9 为风机在不同初始条件下进行自由振动, 计算得到的平台艏摇响应时程。可以清楚地看到, 当在平台横摇方向转角为 5°、其他初始为 0(见图 9 (a))时,和平台纵摇方向转角为 5°、其他初始为 0(见 图 9(b))时,模型与 OpenFAST 计算得到的平台艏 摇响应相差较大,而仅当在平台艏摇方向转角为 5°、 其他初始为0(见图9(c))时,两者结果完全吻合。 表明用OpenFAST计算时平台的横摇和纵摇会影 响艏摇的振幅和频率精度,由于多体系统的耦合特 性,进而对叶片响应造成影响,带来一定误差,特别 是叶片的面外振动(见图4(e))。这些误差在通常 情况下对浮式风机计算的影响不大,但在某些特殊 情况,比如利用变桨距方法对风机的振动进行抑制 时就会带来较大的影响,不容忽视。

Fig. 9 Yaw response time history of platform under different initial conditions

4 结 论

对海上浮式风机多体系统的耦合动力模型进行 了深入研究,建立了复杂工况下 Spar 型海上浮式风 机改进的 14-DOF 耦合动力模型,包括气动力模块、 水动力模块和结构分析模块等,用于准确计算其动 力响应,得到的主要结论有:

(1)不对坐标旋转矩阵中的角度进行小量近似,同时考虑角速度和欧拉角速度的换算关系,导出了应用范围更广且更为精准的海上浮式风机复杂多体系统的运动方程;

(2)角度的小量假定会使平台的横摇和纵摇对 平台的艏摇产生影响,进而对叶片面外振动带来较 大误差;

(3)忽略叶片扭转角对叶片变形的影响会对叶片 面内振动造成非常大的误差,本模型考虑风机叶片扭 转角对叶片变形的影响,得到了准确的叶片面内外 响应;

(4)数值仿真分析表明,本文模型可以更准确地 计算系统的动力响应,适用性更广。

参考文献:

[1] 闵兵,王梦川,傅小荣,等.海上风电是风电产业未来的发展方向——全球及中国海上风电发展现状与趋势
 [J].国际石油经济,2016,24(4):29-36.
 Min B, Wang M C, Fu X R, et al. Offshore wind pow-

er as the development trend of wind industry—developments of global offshore wind power [J]. International Petroleum Economics, 2016, 24(4): 29-36.

- [2] 朱本瑞,孙超,黄焱.海上单桩风机结构冰激振动响应分析[J].土木工程学报,2021,54(1):88-96.
 Zhu B R, Sun C, Huang Y. Ice-induced vibration response analysis of monopile offshore wind turbine[J].
 China Civil Engineering Journal, 2021, 54(1):88-96.
- [3] 罗金平,喻旭明,陈杰峰,等.一种海上浮式风电基础 频域动力响应分析新技术[J].振动工程学报,2019, 32(2):288-295.

Luo J P, Yu X M, Chen J F, et al. A technique of floating wind turbine dynamic response estimation in frequency domain[J]. Journal of Vibration Engineering, 2019, 32(2): 288-295.

- [4] Pérez-Collazo C, Greaves D, Iglesias G. A review of combined wave and offshore wind energy[J]. Renewable & Sustainable Energy Reviews, 2015, 42: 141-153.
- [5] Jonkman J M, Sclavounos P D. Development of fully coupled aeroelastic and hydrodynamic models for offshore wind turbines [C]. 44th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada: American Institute of Aeronautics and Astronautics, 2006: 995.
- [6] Sebastian T, Lackner M A. Development of a free vortex wake method code for offshore floating wind turbines[J]. Renewable Energy, 2012, 46: 269-275.
- [7] Stewart G, Lackner M. Offshore wind turbine load reduction employing optimal passive tuned mass damping systems[J]. IEEE Transactions on Control Systems Technology, 2013, 21(4): 1090-1104.
- [8] Si Y L, Karimi H R, Gao H J. Modelling and optimiza-

tion of a passive structural control design for a spar-type floating wind turbine[J]. Engineering Structures, 2014, 69: 168-182.

- [9] He J, Jin X, Xie S Y, et al. Multi-body dynamics modeling and TMD optimization based on the improved AF-SA for floating wind turbines [J]. Renewable Energy, 2019, 141: 305-321.
- [10] Jahangiri V, Sun C. Three-dimensional vibration control of offshore floating wind turbines using multiple tuned mass dampers[J]. Ocean Engineering, 2020, 206; 107196.
- [11] Yang J J, He E M. Coupled modeling and structural vibration control for floating offshore wind turbine[J]. Renewable Energy, 2020, 157: 678-694.
- [12] Sun C, Jahangiri V. Bi-directional vibration control of offshore wind turbines using a 3D pendulum tuned mass damper [J]. Mechanical Systems and Signal Processing, 2018, 105: 338-360.
- [13] Fossen T I. Handbook of Marine Craft Hydrodynamics and Motion Control[M]. Chichester, United Kingdom: John Wiley & Sons, Ltd., 2011.
- [14] Jonkman J M. Modeling of the UAE wind turbine for refinement of FAST_AD: NREL/TP-500-34755 [R].
 Golden, Colorado, US: National Renewable Energy Laboratory, 2003: 7-15.
- [15] Jonkman J M. Dynamics Modeling and Loads Analysis of an Offshore Floating Wind Turbine[M]. Boulder:

University of Colorado at Boulder, 2007.

- [16] Al-Solihat M K, Nahon M. Stiffness of slack and taut moorings[J]. Ships and Offshore Structures, 2016, 11 (8): 890-904.
- [17] Høeg C, Zhang Z L. The influence of different mooring line models on the stochastic dynamic responses of floating wind turbines[J]. Journal of Physics: Conference Series, 2018,1037(6): 062016.
- [18] Dinh V N, Basu B. Passive control of floating offshore wind turbine nacelle and Spar vibrations by multiple tuned mass dampers [J]. Structural Control and Health Monitoring, 2015, 22(1): 152-176.
- [19] Shinozuka M, Deodatis G. Simulation of stochastic processes by spectral representation [J]. Applied Mechanics Reviews, 1991, 44(4): 191-204.
- [20] Jonkman J M. Definition of the floating system for Phase IV of OC3:NREL/TP-500-47535[R]. Golden, Colorado, US: National Renewable Energy Laboratory, 2010: 2-21.
- [21] Buhl M L, Jr. New empirical relationship between thrust coefficient and induction factor for the turbulent windmill state:NREL/TP-500-36834[R]. Golden, Colorado,US: National Renewable Energy Laboratory, 2005: 17-31.
- [22] Jonkman J M, Butterfield S, Musial W, et al. Definition of a 5-MW reference wind turbine for offshore system development: NREL/TP-500-38060[R]. Golden, Colorado, US: National Renewable Energy Laboratory, 2009: 7-18.

Coupled dynamic model of multi-body system of floating offshore wind turbine

LI Shu-jin¹, ZHENG Da-cheng¹, KONG Fan²

School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China;
 College of Civil Engineering, Hefei University of Technology, Hefei 230009, China)

Abstract: With the rapid development of offshore wind power in recent years, the floating offshore wind turbine is proposed to capture more abundant and lasting wind energy in the deep sea, which has become the main direction of wind energy development. Due to the special structures and complex environment, the accurate calculation and analysis of floating offshore wind turbines will be particularly important for a multi-body system. In this paper, the coupling dynamic model of a floating offshore wind turbine is deeply studied. The improved 14-DOF coupling dynamic model of spar floating offshore wind turbine under complex working conditions is established, including an aerodynamic model, hydrodynamic model and structural analysis model, which can accurately calculate its dynamic response and verified by numerical simulation. The main improvements are as follows: expanding its scope of application without using small approximation of the angle in the coordinate rotation matrix; considering the conversion relationship between angular velocity and Euler angular velocity, the motion equation of floating offshore wind turbine with wider application range and more accuracy is derived. Besides, considering the influence of fan blade torsion angle on blade deformation, the accurate in-plane and out-of-plane response of the blade is obtained. Meanwhile, the potential flow theory is used to calculate the hydrody-namic force in order to solve the limitations of the traditional Morison equation algorithm. The simulation analysis shows that the model proposed in this paper can calculate the dynamic response of floating offshore wind turbine system more accurately with wider applicability.

Key words: floating offshore wind turbine; multi-body system; aerodynamic analysis; hydrodynamic analysis; coupled model

作者简介:李书进(1967一),男,博士,教授,博士生导师。电话:(027)87651786; E-mail: sjli@whut.edu.cn。