伸缩缝及支座病害对简支梁桥车致动力响应的 影响研究

侯剑岭^{1,2},刘灵灵¹,吴喜德¹,许维炳²,陈彦江²,王 瑾²,刘钧岩², 王 博²,李 岩³,张 轩⁴

(1.交通运输部水运科学研究所,北京100088;2.北京工业大学城市建设学部,北京100124;3.哈尔滨工业大学交通科学与工程学院,黑龙江哈尔滨150090;4.中建二局第一建筑工程有限公司,北京100176)

摘要:中小跨径桥梁在中国公路桥梁中占比大,其伸缩缝服役环境恶劣,易发生损伤造成过往车辆剧烈振动、桥梁 支座损伤等病害。为探明伸缩缝、支座参数对简支梁桥车致动力响应的影响,建立了车-伸缩缝-桥梁耦合动力响应 (VBCV-J)数值分析方法,并通过实测数据验证了该方法,进而开展了伸缩缝、支座参数影响规律的研究。研究结 果表明:车速与车辆的振动密切相关,在车速较高、路面状况"一般"时,伸缩缝、梁端的冲击效应会超出规范值。伸 缩缝中梁高于路面会导致该部件的冲击效应增大明显,反之则有所减小;而伸缩缝中梁高于或低于路面,均会造成 该桥梁端冲击效应增大。伸缩缝弹性支撑刚度的降低、主梁边支座脱空均会引起伸缩缝、主梁梁端的冲击效应增 大。支座刚度降低则主要导致主梁整体的冲击效应增大。伸缩缝的破损不仅影响自身冲击效应,还会大幅增大简 支梁桥梁端构件的冲击作用,在设计和养护中,应对伸缩缝及梁端构件给予足够的重视。

关键词:简支梁桥;伸缩缝;支座;参数分析
 中图分类号:U448.23;U442.5⁺5
 文献标志码:A
 DOI:10.16385/j.cnki.issn.1004-4523.2024.02.011

引 言

截至2020年末,中国公路桥梁共87.83万座,其 中中小跨径桥梁为78.64万座,占总数量的86.15%。 中小跨径桥梁随服役年限增长,易会出现耐久性降 低、局部构件疲劳破损等问题。特别是桥梁伸缩缝 服役环境恶劣,受重载直接作用,极易发生疲劳损 伤,国内外伸缩缝病害引起的交通事故屡见不鲜^[1]。 伸缩缝损伤会造成过往车辆振动加剧,也会造成梁 端构件(支座、桥面板等)的损伤。而支座等构件的 损伤又会增大伸缩缝-桥梁的车致动力响应,形成恶 性循环。

国内外众多学者通过现场实验及数值分析开展 了伸缩缝、支座等参数变化对桥梁车致动力响应影 响的研究。在伸缩缝研究方面,Hou等^[2]对大跨度 CFST拱桥的常见病害进行了调查及实测,研究结 果表明伸缩缝病害会引发车致振动显著增大,并引 发支座等构件的损伤。Deng等^[34]利用Road Surface Condition(RSC)来仿真伸缩缝处路面形式,采 **文章编号:**1004-4523(2024)02-0286-11

用车-桥耦合振动分析方法探究了伸缩缝损伤对预 应力混凝土箱梁桥桥面板的影响,结果表明伸缩缝 损伤会导致桥面板和伸缩缝的车辆冲击作用显著增 大。Ding等^[56]采用弹簧-阻尼单元模型对伸缩缝的 受到的车辆冲击作用进行研究,包括不同形式模数 式伸缩缝以及间隙宽度对车辆荷载的影响。在支座 病害研究方面,Roeder等^[7]、Wang等^[8]和陈树礼等^[9] 对桥梁支座的车致疲劳损伤进行了研究,结果表明 车辆荷载作用下,梁端部件受冲击效应显著,易发生 疲劳破坏,从而改变桥梁的约束条件和受力特性,使 桥梁的动静力响应发生显著增大。综上,在伸缩缝、 支座等部件发生损伤时,桥梁车致动力响应规律会 发生显著变化。兼顾考虑伸缩缝、支座病害影响的 车致动力响应分析方法亟待建立。

鉴于此,本文以典型的中等跨径简支梁桥为原型桥,结合车轮缝等效力、位移模型和模态综合法建立了车-伸缩缝-桥耦合振动(Vehicle-Bridge Coupling Vibration Considering Expansion Joint Parameters 以下简称 VBCV-J)数值分析方法;进而对车速、路面、伸缩缝、支座等参数对 VBCV-J系统响应

收稿日期: 2022-06-05;修订日期: 2022-09-02

基金项目:国家自然科学基金资助项目(51908015, 51978021, 52108428, 52178446);交通运输部水运科学研究所面上 项目(172201)。

的影响规律进行了研究。研究成果可为VBCV-J响 应分析所借鉴,也可为中小跨径桥梁的伸缩缝病害 机理及预防措施提供理论支撑。

1 VBCV-J分析方法

VBCV-J车辆驶入桥梁过程包括两个阶段:第 一阶段为车辆前、后轴通过伸缩缝阶段,第二阶段为 车辆完全行驶至桥面阶段。其中,车-桥耦合振动方 法(VBCV)在第二阶段车-桥耦合动力响应计算中 取得了较好的效果,鉴于此,在车辆完全行驶至主梁 时采用VBCV分析方法进行计算。车辆模型采用 多自由度的车辆模型^[10]。通过假定车轮与桥面之间 接触点的位移、作用力协调关系,从而得到车-桥耦 合振动方程:

$$\begin{bmatrix} \boldsymbol{M}_{\mathrm{V}} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{M}_{\mathrm{B}} \end{bmatrix} \! \left\{ \ddot{\boldsymbol{X}}_{\mathrm{V}} \right\} \! + \! \begin{bmatrix} \boldsymbol{C}_{\mathrm{V}} & \boldsymbol{C}_{\mathrm{VB}} \\ \boldsymbol{C}_{\mathrm{BV}} & \boldsymbol{C}_{\mathrm{B}} \! + \! \boldsymbol{C}_{\mathrm{B}}^{\mathrm{V}} \end{bmatrix} \! \left\{ \dot{\boldsymbol{X}}_{\mathrm{V}} \right\} \! + \\ \begin{bmatrix} \boldsymbol{K}_{\mathrm{V}} & \boldsymbol{K}_{\mathrm{VB}} \\ \boldsymbol{K}_{\mathrm{BV}} & \boldsymbol{K}_{\mathrm{B}} \! + \! \boldsymbol{K}_{\mathrm{B}}^{\mathrm{V}} \end{bmatrix} \! \left\{ \begin{matrix} \boldsymbol{X}_{\mathrm{V}} \\ \boldsymbol{q}_{\mathrm{B}} \end{matrix} \right\} \! = \! \left\{ \begin{matrix} \boldsymbol{F}_{\mathrm{V}}^{r} \\ \boldsymbol{F}_{\mathrm{B}}^{rG} \end{matrix} \right\}$$
(1)

式中 M, C 和 K 分别为质量、阻尼和刚度矩阵;"V"(vehicle)和"B"(bridge)分别表示车辆和桥梁; "r"和"G"分别为不平整度和自重引起的耦合作用 力; $C_{VB}, C_{BV}, C_{B}^{V}, K_{VB}, K_{BV}, K_{B}^{V}$ 为矩阵耦合项,其中, $C_{VB} = C_{BV}^{T}, K_{VB} = K_{BV}^{T}$ 。

在计算车辆过缝时,由于伸缩缝处的桥面不连续,车辆与桥面之间为点接触关系,会导致车辆过缝的计算结果失真。鉴于此,本文基于车辆过缝过程参数化,提出了车轴等效力、等效位移模型,并对车辆过缝时的车-桥耦合振动方程进行了推导。

1.1 VBCV-J等效力模型

以中国自主研发广泛应用于各型桥梁的双缝 式、直梁连杆链条式伸缩缝为例。该型伸缩缝构造 形式及过缝示意如图1所示。图1中,*L*₁为车辆起点 与桥头的距离,*s*₀为间隙宽,*s*为接触长度,*l*₆为中梁 宽,*l*₀为边梁宽。

车胎作用于伸缩缝横梁的竖向力,与其和车胎的接触长度相关^[11-12]。受车胎接触长度影响,车辆 过缝可分为两种工况:

Case 1:间隙较大,伸缩缝中梁会发生单独承受 车轴重量的情况,即 $s < 2s_0 + l_c$;

Case 2:间隙较小,伸缩缝中梁不会发生单独承 受车轴重量的情况,即 $s \ge 2s_0 + l_{co}$

对比分析两种工况, Case 1为更不利工况。鉴于此,本文主要对Case 1进行研究。假定车胎总作用力为F, F_{STG}和F_{MTG}分别表示作用于边梁、中梁的竖向力,各作用力可由下式表示:

$$F_{\text{STG1}} = \beta_{\text{STG1}} F, F_{\text{MTG}} = \beta_{\text{MTG}} F, F_{\text{STG2}} = \beta_{\text{STG2}} F,$$
$$\beta_{\text{STG1}} + \beta_{\text{MTG}} + \beta_{\text{STG2}} = 1$$
(2)

式中 等效力系数β表示梁节点受到分力与总作用 力比值,系数β与行驶位置的关系如表1所示。

《公路工程技术标准》规定,在计算构件和连接 构件的承载能力极限状态时,车辆荷载按《公路桥涵 设计通用规范》(JTG D60—2015)^[13]中的规定进行取 值。基于上述规定,车胎的接触面长度s取0.2 m。 对双缝式伸缩缝单间隙宽80 mm时,系数β变化规 律如图2所示。

由图2可知,在车辆通过伸缩缝时,系数β可有 效反映各横梁所承受车辆荷载的分配比例。系数β 为VBCV-J动力平衡方程的建立提供了将面荷载转

Tab. 1 Kelation between p and driving position						
工况	行驶距离 <i>x</i>	$eta_{ m STG1}$	$eta_{ ext{MTG}}$	$eta_{ m stg2}$		
	$L_1 < x \leq L_1 + l_0 + s_0$	1	0	0		
	$L_1 + l_0 + s_0 \leq x < L_1 + l_0 + s$	$\frac{l_0 - (x - L_1 - s)}{s - s_0}$	$\frac{x-L_1-l_0-s_0}{s-s_0}$	0		
$s \leq 2s_0 + l_c$	$L_1 + l_0 + s \leqslant x < L_1 + l_0 + l_c + 2s_0$	0	1	0		
	$L_1 + l_0 + l_c + 2s_0 \leqslant x < s + L_1 + l_0 + s_0 + l_c$	0	$\frac{L_1 + l_0 + s_0 + l_c - (x - s)}{s - s_0}$	$\frac{x - (L_1 + l_0 + 2s_0 + l_c)}{s - s_0}$		
	$s + L_1 + l_0 + s_0 + l_c \le x \le s + L_1 + 2l_0 + s_0 + l_c$	0	0	1		

表 1 β 值与行驶位置关系 Tab. 1 Relation between β and driving position

Fig. 2 Variation law of β with driving distance

化为点荷载的计算方法。

1.2 VBCV-J等效位移模型

分布式弹簧阻尼单元(Distributed Spring-Damper Element)的有效性在模拟车辆与伸缩缝动力耦合响 应中得到了验证^[5]。考虑到实际大型桥梁的复杂程 度和计算分析效率,本文借鉴分布式弹簧阻尼单元 的思想,引入等效位移分配系数α来考虑车轮过缝 过程中车轮与伸缩缝边梁和中梁的位移协调关 系^[14],如图3所示。

如图3所示,车辆与伸缩缝的相互作用力是由

图 3 等效位移模型 Fig. 3 Equivalent displacement model

节点A与B之间的位移差产生,为将面接触转换为 点接触,设置轮胎节点B,其位移等效于接触面的平 均位移。车胎和伸缩缝各梁的接触长度与节点B的 位移值相关,等效位移如下式所示:

$$U_{\rm B} = \frac{L_{\rm STG}}{L} U_{\rm STG} + \frac{L_{\rm MTG}}{L} U_{\rm MTG},$$
$$U_{\rm B} = \alpha U_{\rm BL} + (1 - \alpha) U_{\rm ZL}, \ \alpha = \frac{L_{\rm STG}}{L} \qquad (3)$$

式中 $U_{\rm B}$ 为等效位移值; $L_{\rm STG}$, $L_{\rm MTG}$ 分别为与边梁、 中梁的接触长度;L为 $L_{\rm STG}$ 与 $L_{\rm MTG}$ 之和; $U_{\rm STG}$, $U_{\rm MTG}$ 分别为边梁、中梁对应节点的位移。等效位移系数 α 为不同车辆过缝参数化分析提供了理论基础,后 续可对不同车型、车载车胎的接触进行深层次研究, 得出更为精确的虚拟节点位移变化规律。本研究对 α 进行了合理的简化,将系数 α 设定为线性函数。结 合车辆过缝的等效力分析可假定 $\alpha = \beta$ 。

1.3 车-缝-桥耦合振动方程

以三轴车前轴行驶至伸缩缝状态为例^[10],对 VBCV-J的主要公式项进行介绍。前轴左轮与桥梁 接触面的等效竖向位移如下式所示:

$$Z_{b}^{1} = \sum_{n=1}^{N_{b}} q_{n} \phi_{v}^{n}(x_{i}) = \alpha \sum_{n=1}^{N_{b}} q_{n} \phi_{v}^{n}(x_{\text{STG}}) + (1-\alpha) \sum_{n=1}^{N_{b}} q_{n} \phi_{v}^{n}(x_{\text{MTG}})$$
(4)

则:

$$\dot{Z}_{b}^{1} = \sum_{n=1}^{N_{b}} \phi_{v}^{n}(x_{i})\dot{q}_{n} + \sum_{n=1}^{N_{b}} \frac{\partial \phi_{v}^{n}(x_{i})}{\partial x} Vq_{n} = \\ \alpha \left[\sum_{n=1}^{N_{b}} \phi_{v}^{n}(x_{\text{STG}})\dot{q}_{n} + \sum_{n=1}^{N_{b}} \frac{\partial \phi_{v}^{n}(x_{\text{STG}})}{\partial x} Vq_{n} \right] + \\ (1-\alpha) \left[\sum_{n=1}^{N_{b}} \phi_{v}^{n}(x_{\text{MTG}})\dot{q}_{n} + \sum_{n=1}^{N_{b}} \frac{\partial \phi_{v}^{n}(x_{\text{MTG}})}{\partial x} Vq_{n} \right]$$

$$(5)$$

式中 x_i, x_{STG}, x_{MTG}分别表示车轮节点、伸缩缝边 梁、中梁的纵向坐标; q_n表示模态坐标值; ϕ_{v}^{*} 表示第 n阶模态的竖向分量, 下标"v"表示竖向。

车施加于桥梁的等效竖向力如下式所示:

$$F_{Bn}^{rG} = \left[\beta \times \phi_{v}^{n}(x_{\text{STG},L1})F_{G}^{L1} + (1-\beta) \times \phi_{v}^{n}(x_{\text{MTG},L1})F_{G}^{L1}\right] + \beta \phi_{v}^{n}(x_{\text{STG},L1})k_{vlL}^{1}\left[\alpha r(x_{\text{STG},L1}) + (1-\alpha)r(x_{\text{MTG},L1})\right] + (1-\beta)\phi_{v}^{n}(x_{\text{MTG},L1})k_{vlL}^{1}\left[\alpha r(x_{\text{STG},L1}) + (1-\alpha)r(x_{\text{MTG},L1})\right] + \left[\beta \times \phi_{v}^{n}(x_{\text{STG},R1})F_{G}^{R2} + (1-\beta) \times \phi_{v}^{n}(x_{\text{MTG},R1})F_{G}^{R2}\right] + \beta \phi_{v}^{n}(x_{\text{STG},R1})k_{vlR}^{1}\left[\alpha r(x_{\text{STG},R1}) + (1-\alpha)r(x_{\text{MTG},R1})\right] + (1-\beta)\phi_{v}^{n}(x_{\text{MTG},R1})k_{vlR}^{1}\left[\alpha r(x_{\text{STG},R1}) + (1-\alpha)r(x_{\text{MTG},R1})\right] + (1-\beta)\phi_{v}^{n}(x_{\text{MTG},R1})k_{vlR}^{1}\left[\alpha r(x_{\text{STG},R1}) + (1-\alpha)r(x_{\text{MTG},R1})\right] + k_{vlL}^{i}r(x_{Li}) + c_{vlL}^{i}r'(x_{Li})V + F_{G}^{ii}\phi_{v}^{n}(x_{Li}) + \left(k_{vlR}^{i}r(x_{Ri}) + c_{vlR}^{i}r'(x_{Ri})V + F_{G}^{Ri}\right)\phi_{v}^{n}(x_{Ri})\right]$$
(6)

文中给出了VBCV-J方程主要项的表达式,其 他常规项表达式可见参考文献[10,15]。在车辆完全 行驶至桥梁时,运行VBCV振动程序,其矩阵形 式与VBCV-J矩阵一致,使计算得以实现。VBCV-J 数值计算方法采用 Newmark-β法,程序运行稳定、 收敛性好,桥梁动力响应计算结果可靠。

2 实测与数值分析

对典型公路简支梁桥进行实测,主梁由四片小箱 梁组成,跨径布置为30×3m,桥面宽度为12.75m。 采用双缝式伸缩缝,支座采用板式橡胶支座。

2.1 现场测试

2.1.1 自振频率测试

对伸缩缝、主梁自振频率进行测试,加速度测点 A-SSF和A-ZL分别布置于伸缩缝中梁中部和主梁 跨中位置,采用FDD方法对伸缩缝、主梁环境激励 下的动力信号进行频谱分析,如图4所示。

由图4可知,伸缩缝、桥梁中梁的竖向一阶自振频率分别为117.3 Hz,4.83 Hz,伸缩缝的基频要远 大于主梁的竖向基频。

2.1.2 行车试验

由于伸缩缝可利用空间的限制,故将位移测 点(D-SSF)布置于临近伸缩缝边梁的主梁位置 处,主梁位移测点(D-ZL)布置于跨中截面。车速为 60 km/h,RSC为"较好",测点横向布置于距离防撞 护栏50 cm位置处,车道布置如图5(a)所示。

试验车采用12自由度二轴车模型,前轴总重约 9.14 t,后轴总重25.1 t,由于篇幅限制,详细参数见 文献[10,15]。测点D-SSF,D-ZL的位移时程曲线 分别如图5(b),(c)所示。

Fig. 5 Measuring points layout and the measured vertical displacement time-history curves

2.2 数值分析

利用ANSYS建立多尺度、精细化的伸缩缝-桥 梁耦合分析模型,如图6所示;模型主要参数如表2 所示。

采用质量归一化对伸缩缝-桥梁结构模态进行 分析,表3给出了主梁、伸缩缝前两阶竖向振动频率 计算值与实测值的对比。

图 6 伸缩缝-桥梁有限元模型 Fig. 6 Expansion joint and bridge finite element model

Ta	b. 2 Results	of dynamic characteristics
构件	单元	主要参数
主梁	Solid65	$E_{\rm c} = 3.45 \times 10^{10} {\rm Pa},$ $ ho = 2.6 \times 10^3 {\rm kg/m^3}, \mu = 0.3$
伸缩缝	Beam188	$E_s = 2.05 \times 10^{11} \mathrm{Pa},$ $\rho = 7.87 \times 10^3 \mathrm{kg/m^3}, \mu = 0.2$
橡胶支撑	Combin14	$k_0 = 8 \times 10^4 \text{kN/m},$ $c_0 = 5 \times 10^3 \text{N} \cdot \text{s/m}$
桥梁支座	Combin14	$k_1 = 2.4 \times 10^6 \text{ kN/m},$ $c_1 = 5 \times 10^3 \text{ N} \cdot \text{s/m}$

表2 桥梁模态分析

表 3 桥梁模态分析

Τa	ıb. 3	Results	of	dynamic	charac	teristics
----	-------	---------	----	---------	--------	-----------

米回	阶次	自振频率/Hz		归关
矢加		计算值	实测值	庆左
十	1	5.02	4.83	3.78%
土朱	2	7.74	7.47	3.49%
伸按终	1	118.9	117.3	1.34%
甲堆建	2	124.4	123.5	0.72%

由表3可知,桥梁部件前两阶竖向自振频率误 差范围为0.72%~3.78%,ANSYS分析模型与实桥 在动力特性方面偏差满足工程需求,桥梁-伸缩缝模 态信息(振动频率、模态位移、模态内力等)可进一步 用于VBCV-J分析。

二轴车的计算方法与前文三轴车相似,可根据 前文公式进行推导。需要指出的是,在采用 VBCV-J分析方法对行车实验进行模拟时,为使得 参与计算的振型数量达到精度要求,本文选取主梁 的主要振型(前50阶振型)以及包含伸缩缝局部振 动的振型(前50阶振型)进行计算。各测点竖向位 移实测与数值分析结果的对比如图7所示。

如图7所示,梁端测点竖向位移最大值误差为 4.76%,跨中测点位移最大值误差为2.32%,需要说 明的是,由于实际车道的RSC与数值模拟之间的误 差,导致两者之间存在误差。上述计算结果表明理

Fig. 7 Comparison between measured and simulated displacement values

论值与实测值吻合较好,本文提出的VBCV-J分析 方法及基于MATLAB平台编制的数值求解方法行 之有效。

3 VBCV-J参数影响分析

车辆采用与2.2节一致的二轴车,VBCV-J分析 测点包括伸缩缝各横梁(STG1,MTG,STG2)、主 梁梁端(S)、1/4跨(Q)、1/2跨(M),测点横向布置 位置与2.2节一致。需要说明的是,边梁节点耦合 于主梁梁端对应节点,梁端边支座距离梁端较近,边 梁STG-2测点、梁端边支座的动力响应规律与主梁 梁端(S)测点一致。鉴于此,本文主要考察该型桥 梁梁端(S)的车致动力响应规律。

3.1 车速、路面参数影响规律

3.1.1 车 速

为获得车辆行驶速度对桥梁动力响应的影响规律,对车速在10~100 km/h范围内,路面考虑为光 滑路面,对原型桥进行 VBCV-J分析,其他参数均为 设计值。图8给出了车速60 km/h时各测点竖向位 移时程曲线。

采用动力放大系数 DAF 来表示车辆的冲击作 用(动力放大系数值, DAF=最大动力响应/最大静 力响应),简支梁桥各测点的 DAF 值随车速的变化 规律如图 9 所示。

如图 9(a)所示,随着车速增大,中梁 DAF 值 先减小后增大,当车速达 50~100 km/h 阶段,前、 后轴过缝 DAF 值增大,最大值分别为 1.40,1.22。 由于前轴轴重较轻,虽然前轴过缝时 DAF 值较 大,但伸缩缝结构的受力处于相对较低状态。如 图 9(b)所示,由于车辆过缝产生振荡,简支梁桥

Fig. 8 Vertical displacement time history curve

Fig. 9 DAFs of bridge measuring points at different speeds

主梁梁端测点的 DAF 值较其他测点大。随着行 驶速度增加,梁端测点 DAF 值增大,梁端至跨中 测点的 DAF 最大值依次减小(从 1.17 减小至 1.02),1/4 跨、跨中测点 DAF 值较梁端 DAF 值分 别减小12.0%,12.8%。车速与车辆的振动密切相 关,当车辆振动频率与各部件的振动频率接近时, 该测点的冲击效应也会更为明显,车速的研究结 果可为桥梁-伸缩缝健康防护提供理论支撑。

3.1.2 RSC-路面等级

鉴于桥梁各测点在车速较高时DAF值较大,对 车速为60~100 km/h时的路面平整度-RSC(Road Surface Condition)进行参数影响分析,RSC为四个 等级:理想-0、好-1、较好-2、一般-3。各测点DAF值 与车速、RSC的关系如图10所示。

由图 10 可见,伸缩缝中梁测点 DAF 随 RSC、车 速的增大而增大。当车速达 100 km/h, RSC 为"一般",前、后轴过缝时,伸缩缝中梁的 DAF 分别达

1.70和1.50,均大于设计值1.45。与"RSC-理想"相比,前、后轴过缝,中梁DAF值分别增大21.73%和27.40%。RSC级别对主梁测点DAF值的影响较大。行驶速度达100 km/h,RSC为"一般"时,各测点DAF值达最大值,梁端至跨中各测点DAF值从1.47减小至1.18,其中梁端DAF值大于设计值1.27。与"理想"路面相比,梁端至跨中各测点DAF值增幅范围从24.79%减小至15.18%。

综上,可预见的是,简支梁桥服役达到一定年限,路面恶化情况,在长期重载车辆反复作用下,伸 缩缝、简支梁梁端部件会发生较为严重的疲劳损伤。

3.2 伸缩缝参数影响规律

3.2.1 高 差

仅考虑伸缩缝处的RSC来模拟高差(与路面高 差为-2~+2 cm),车速为60 km/h,进行参数影响 分析。高差+2 cm时,各测点的竖向位移时程曲线 如图11所示。

桥梁各测点 DAF 值随高差的变化规律如图 12 所示。由图 12 可知,伸缩缝中梁高差导致车辆与桥 梁之间相互作用发生变化,伸缩缝中梁测点 DAF 值 与高差近似成正比关系,在高于路面时 2 cm 时,伸 缩缝中梁 DAF 最大值为 2.20 和 2.11,远大于设计值 1.45。伸缩缝中梁高于或低于路面均会引起梁端冲

Fig. 11 Vertical displacement time history curve of measuring points

Fig. 12 DAFs of each measuring point with height difference

击效应的增大,高差为-2 cm时,梁端DAF值为 1.53,大于设计值1.27。需要指出的是,伸缩缝中梁 低于路面时,伸缩缝的冲击效应有所减小,但梁端的 冲击效应显著增大。主梁其他部位测点受到的影响 较小,增幅为1.20%~1.53%。

3.2.2 伸缩缝支撑刚度

随伸缩缝服役年限的增加,弹性支撑刚度 k_0 会有所减小,车速为60 km/h,RSC为"理想",对弹性 支撑刚度分别为 k_0 , $\frac{2}{3}k_0$, $\frac{1}{2}k_0$, $\frac{1}{3}k_0$ 四种工况进行分 析,各工况下简支梁桥各测点DAF值变化规律如 图13所示。

如图 13 所示,弹性支撑刚度 & 的降低导致伸缩 缝整体的结构承载力和抗震性能变差,车辆的震荡 更为明显,中梁的冲击效应增大,支撑刚度为 ¹/₃ & 时,中梁 DAF 最大值为 1.82 和 1.51,分别增大 54.60% 和 35.50%。随伸缩缝弹性支撑刚度 & 降 低,梁端冲击效应变大,DAF 最大值达 1.25,增幅达 9.27%,而伸缩缝支撑刚度的变化对主梁其他部位 DAF 值的影响相对较小。

3.3 支座参数影响规律

由前文分析可知,伸缩缝病害对主梁梁端的冲击效应影响显著,会导致梁端支座在长期服役过程 中损伤或破坏。在实际的简支梁桥检测中,支座的 损伤与脱空也是屡见不鲜。鉴于此,本节开展了考 虑支座损伤的VBCV-J分析。

3.3.1 支座支撑刚度

本节共设计了四种支座的损伤工况,支撑刚 度 k₁ 折 减 为 80% (0.8k₁),60% (0.6k₁),40% (0.4k₁),20% (0.2k₁)。考虑车速 10~100 km/h、 RSC-理想,各工况桥梁各测点DAF 值变化规律如 图 14所示。

由图 14 可知,伸缩缝中梁 DAF 随简支梁桥支 座刚度降低变化较小,前、后轴过缝 DAF 值分别 达 1.41 和 1.23,增幅分别为 0.60% 和 1.04%。主 梁各测点 DAF 值随支座损伤程度加深而增大, DAF 达 1.40, 1.15 和 1.08,增幅为 24.20%, 13.30% 和 6.30%,梁端的冲击效应受影响最为显 著。简支梁桥支座刚度的降低对伸缩缝冲击效应 的影响很小,但对简支梁桥主梁影响较大。这是 由于主梁的支撑体系发生变化,导致桥梁整体振 动特性发生改变,而伸缩缝边界锚固于两跨桥梁 之间,一跨桥梁支座发生轻度损伤对其动力特性 影响相对较小。

3.3.2 支座脱空

根据实际桥梁检测,梁端边支座脱空现象 屡见不鲜,基于此开展梁端边支座脱空对 VBCV-J动力响应的影响研究。图15给出了车速为 60 km/h、RSC-理想时,桥梁各测点的竖向位移 时程曲线。

图 15 支座脱空下桥梁各测点位移时程曲线 Fig. 15 Time history curve of vertical displacement of bridge under support void

各车速下简支梁桥各测点的DAF值随车速的 变化规律如图16所示。由图16可知,由于主梁梁端 边支座脱空,对于该支座影响范围内伸缩缝、主梁不 能提供有效支撑,对后轴过缝的影响较大,伸缩缝中 梁 DAF 达 1.40 和 1.30, 较支座无损伤时分别增大 3.76%, 6.73%。支座脱空对简支梁桥主梁各测点 冲击效应影响较大, 简支梁桥主梁梁端至跨中测点 的 DAF 最大值分别达 1.50, 1.24 和 1.16, 较支座无 损伤时分别增大 38.40%, 8.81% 和 14.08%。梁端 测点 DAF 值远超设计值 1.27。

Fig. 16 Comparison of IFs for measuring points

4 结 论

本文提出了VBCV-J数值分析方法,并通过实测进行了验证。进而以简支梁桥为原型,探究了车速、路面不平整度(RSC)、伸缩缝、支座等参数对该型桥梁的车致动力响应的影响规律,主要结论如下:

(1)主梁测点的冲击效应随距离梁端位置的增加而减小。在车速较高、路面状况"一般"时,伸缩缝、主梁梁端会产生显著的车辆冲击效应,超出规范值。

(2)伸缩缝中梁测点DAF值与高差近似成正 比关系,在高于路面2cm时,DAF达2.20,远超规范 值1.45。伸缩缝中梁高于或低于路面均会引起梁端 冲击效应的增大,而主梁其他测点受高差影响较小 (DAF增幅为1.20%~1.53%);伸缩缝支撑刚度降 低会导致伸缩缝中梁、简支梁梁端冲击效应增大。

(3)支座发生损伤,刚度下降时,简支梁桥主梁的冲击效应会显著增大,伸缩缝受到影响较小。当 支座支撑刚度降低为1/3原刚度时,梁端DAF值增 幅最大,DAF值达1.40。梁端边支座脱空时,简支 梁桥主梁DAF值会显著增大,梁端及伸缩缝DAF 均会有所增大。

(4)伸缩缝、支座病害的服役环境恶劣,文中对 单车作用下的桥梁动力响应进行了研究,可预见的 是在多重病害耦合作用及车队重载反复作用,极易 发生疲劳破坏。伸缩缝及梁端构件亟需提高自身的 抗震性能和安全储备,对多车的参数影响规律的研 究将是下一步研究重点。

参考文献:

下冲击系数分析[J]. 振动工程学报, 2013, 26(4): 531-538.

Yin Xinfeng, Liu Yang, Peng Hui, et al. Impact factors of a bridge with poor road roughness under moving vehicular loads [J]. Journal of Vibration Engineering, 2013, 26(4): 531-538.

- Hou J L, Xu W B, Chen Y J, et al. Typical diseases of a long-span concrete-filled steel tubular arch bridge and their effects on vehicle-induced dynamic response[J]. Frontiers of Structural and Civil Engineering, 2020, 14: 867-887.
- [3] Deng L, Cai C S. Development of dynamic impact factor for performance evaluation of existing multi-girder concrete bridges [J]. Engineering Structures, 2010, 32 (1): 21-31.
- [4] Deng L, Yan W C, Zhu Q J. Vehicle impact on the deck slab of concrete box-girder bridges due to damaged expansion joints[J]. Journal of Bridge Engineering, 2015, 21: 6015006.
- [5] Ding Y, Zhang W, Au F T K. Effect of dynamic impact at modular bridge expansion joints on bridge design
 [J]. Engineering Structures, 2016, 127: 645-662.
- [6] Ding Y, Xie X, Au F T K, et al. Analysis of dynamic load of vehicle bumping at bridge-head using distributed spring-damper element[J]. China Civil Engineering Journal, 2012, 45: 127-135.
- [7] Roeder C W, Macrae G, Crocker P, et al. Dynamic response and fatigue of steel tied arch bridge [J]. Journal of Bridge Engineering, 2000, 5(1): 14-21.
- [8] Wang Q, Okumatsu T, Nakamura S, et al. Fatigue failure analysis of cracks near the sole plate of a halfthrough steel-arch bridge[J]. Journal of Bridge Engineering, 2019, 5(24): 5019004.
- [9] 陈树礼,刘永前,张彦兵.支座病害对大跨度钢桁梁桥的振动影响研究[J].振动与冲击,2017,36(13): 195-200.

Chen Shuli, Liu Yongqian, Zhang Yanbing. Effects of bearing damage on vibration characteristics of a large span steel truss bridge[J]. Journal of Vibration and Shock, 2017, 36(13): 195-200.

- [10] Li Y, Cai C S, Liu Y, et al. Dynamic analysis of a large span specially shaped hybrid girder bridge with concrete-filled steel tube arches[J]. Engineering Structures, 2016, 106: 243-260.
- [11] 中华人民共和国交通运输部.公路桥梁伸缩装置通用 技术条件:JT/T 327—2016[S].北京:人民交通出版 社,2016.

MOT. General technical requirements of expansion and contraction installation for highway bridge: JT/T 327—2016[S]. Beijing: China Communications Press, 2016.

[12] 中华人民共和国交通运输部.公路钢筋混凝土及预应

力混凝土桥涵设计规范: JTG 3362—2018[S]. 北京: 人民交通出版社, 2018.

MOT. Code for design of highway reinforced concrete and pre-stressed concrete bridges and culverts: JTG 3362—2018[S]. Beijing: China Communications Press, 2018.

[13] 中华人民共和国交通运输部.公路桥涵设计通用规 范: JTG D60-2015[S].北京:人民交通出版社, 2015.

MOT. General code for design of highway bridges and culverts: JTG D60-2015 [S]. Beijing: China Commu-

nications Press, 2015.

- [14] Deng L, Yan W C, Zhu Q J. Vehicle impact on the deck slab of concrete box-girder bridges due to damaged expansion joints[J]. Journal of Bridge Engineering, 2016, 21(2): 6015006.
- [15] 许维炳,侯剑岭.考虑车辆过缝的车桥耦合振动分析 方法[J].东南大学学报,2022,52(2):212-221.
 Xu Weibing, Hou Jianling. Vehicle-bridge coupling vibration analysis method considering vehicle passing expansion joint[J]. Journal of Southeast University, 2022, 52(2):212-221.

Study on the influence of expansion joints and bearing diseases on the vehicle-induced dynamic response of simply supported beam bridges

HOU Jian-ling^{1,2}, LIU Ling-ling¹, WU Xi-de¹, XU Wei-bing², CHEN Yan-jiang², WANG Jin², LIU Jun-yan², WANG Bo², LI Yan³, ZHANG Xuan⁴

(1.China Waterborne Transport Research Institute, Beijing 100088, China;

2.Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China;3.School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China;

4. The First Construction Engineering Co., Ltd. of China Construction Second Engineering Bureau, Beijing 100176, China)

Abstract: Medium and small span bridges make up a large proportion of highway bridges in China. Due to harsh service conditions, the expansion joints are prone to diseases, which can exacerbate vehicle vibrations, and subsequently lead to the damage of the end bearings and other components. In order to study the influence of expansion joint and bearing parameters on the vehicle-induced dynamic response of simply supported beam bridge, this paper establishes a numerical analysis method of vehicle-expansion joint-bridge coupling dynamic response (VBCV-J). The effectiveness of VBCV-J analysis method is verified using measured data, followed by an investigation the influence of expansion joint and support parameters. The results show that: The speed is closely related to vehicle vibration. When the vehicle speed is high and the Road Surface Condition (RSC) is "normal", the impact effect of vehicles on expansion joints and the ends of beams can exceed the specified values.. If the girder in the expansion joint is higher than the pavement, the impact on the expansion joint will significantly increase, conversely, it will decrease. When the girder in the expansion joint is higher or lower than the road surface, the impact at the end of the main beam will significantly increase the impact effect on both the expansion joint and the end of the main beam. A decrease in the stiffness of the examptor primarily results in an increased impact on the entire main beam. Damage to the expansion joints not only affects their own impact, but also greatly increases the impact on the end members of the simply supported beams. During design and maintenance, sufficient attention should be given to the end members of the beams.

Key words: simple supported bridge; expansion joint; bearing; parameter analysis

作者简介: 侯剑岭(1990一), 男, 博士, 工程师。 E-mail: houjianling1990@163.com。 通讯作者: 吴喜德(1976一), 男, 硕士, 高级工程师。 E-mail: wuxide@wti.ac.cn。