物流非高斯振动下的产品损伤分析

谢嘉琳^{1,2,3},王志伟^{1,2,3}

(1.暨南大学包装工程学院,广东珠海 519070; 2.暨南大学产品包装与物流广东普通高校重点实验室, 广东珠海 519070; 3.暨南大学包装工程研究所,广东珠海 519070)

摘要:公路运输过程中的冲击信号造成了物流随机振动的非高斯特性。为研究冲击成分对产品损伤的影响,对8条中型卡车和重型卡车实测道路信号进行了统计分析。将振动信号分为20%的高强度非高斯信号、60%的中等强度高斯信号和20%的低强度高斯信号。使用有限元软件进行时域振动分析,计算各信号段的损伤占比。结果表明:振动过程中,非高斯信号蕴含了高强度的冲击信号,造成了绝大部分的损伤。中型卡车振动数据冲击幅值大、占比少,相对而言,重型卡车冲击幅值低、占比多。中型卡车高5%的冲击信号造成了90%以上的损伤;重型卡车20%的非高斯信号中除10%的冲击成分外还包含10%的较高幅值振动,其20%的非高斯信号造成的损伤约为80%或更高。在整个运输振动过程中,含量较少的冲击信号主导了损伤的累积。

关键词:随机振动;公路运输;非高斯;疲劳损伤;冲击 中图分类号:O324;TB485.3 文献标志码:A 文章编号:1004-4523(2024)04-0645-12

DOI:10.16385/j.cnki.issn.1004-4523.2024.04.011

引 言

目前大多数的物流随机振动测试都是基于随机 振动服从高斯分布进行的。学者们通过不断深入研 究发现:公路运输过程中,包装产品所受的振动为非 高斯随机振动^[15]。加速度幅值较大的高水平冲击 造成了随机振动过程的非高斯特性,而这些较大幅 值的冲击可能在产品累积疲劳损伤时占据了尤为重 要的一部分。

在物流冲击信号的分析方面,研究者们对此提 出了很多的方法。Young等^[6]首次提出"二分法", 将振动信号按照强度大小3:7进行分离,分别模拟, 然后串联得到最终的振动信号。Singh等^[7]采用该 方法对北美实测道路振动信号进行了分段随机振动 测试。随后Wallin^[8]采集了不同运输工具的振动数 据,将振动信号按照2:8分离做测试研究。在此基 础上,Kipp^[9]也提出将信号分成5%的高强度冲击信 号、25%的中等强度振动信号和70%的低强度振动 信号,分别模拟,串联测试,称之为"三分法"。随后 陆续有学者提出了峭度控制法、经验模态分解法、机 器学习法等^[10-13],Zhou等^[14]提出"冲击提取法",利用 十分之一峰值法和移动振幅因子将原始信号中的冲 击信号与振动信号精准识别并分离,通过迭代分解 将原始信号分解成一系列近似高斯振动段和具有高 峭度的冲击段。该方法能够较好地再现运输中的振 动信号特征。

在疲劳累积损伤分析方面,安刚等[15]在其研究 中讨论了时域疲劳分析方法,该方法计算量比较大, 但是精度较高。频域法研究振动由于计算量更小, 简单便捷,被广泛研究^[16-21]。Miles等^[22]给出窄带随 机载荷激励下的疲劳损伤计算公式,其中应力峰值 符合 Rayleigh 分布,这种基于窄带激励的假设高估 了疲劳损伤。Dirlik^[23]建立了由两个瑞利函数和一 个指数函数组成的高斯稳态宽带激励下雨流幅值的 概率密度分布模型,在疲劳损伤寿命估算领域得到 广泛运用。Chaudhury^[24]基于宽带应力谱的峰值分 布给出了宽带激励下的疲劳损伤计算公式。传统的 频域疲劳分析方法仅适用于高斯激励,蒋培等[25]利 用非高斯概率密度的 Hermite 多项式渐近展开和三 维联合高阶统计特征,推导得到非高斯随机应力载 荷下的寿命估计公式,但其计算量非常庞大。袁毅 等[26]通过非高斯修正系数建立了非高斯随机过程下 的疲劳损伤与高斯随机过程下的疲劳损伤关系,通 过估算高斯疲劳损伤得到非高斯疲劳损伤。近年 来,众多学者对工程上的疲劳损伤问题进行了诸多 研究,陈家焱等[27]针对非高斯随机振动试验控制中 功率谱均衡与峭度均衡相互干涉,影响控制精度的 问题,提出非高斯随机振动试验并行控制策略。谢

树强等^[28]基于在位使用时的动应力进行了地铁架构的疲劳损伤分析。

学术界对振动信号的非高斯特性带来的影响越 发关注,但对物流非高斯振动信号中冲击和不同等 级振动信号成分对产品总体损伤的量化研究仍然较 少。本文根据珠三角地区实测物流振动信号的统计 参数将振动信号划分为一段包含较大冲击的非高斯 信号和两段不同强度的高斯信号;计算各段信号的 损伤占比,研究损伤与冲击信号占比之间的变化 规律。

1 分离非高斯

课题组前期采集了珠三角地区5种车型在城市 道路和高速公路上以不同载重行驶的15条运输振 动信号,发现加速度幅值较大的冲击信号导致了运 输工具振动信号的非高斯特性。对其中的中型卡车 和重型卡车的8条道路实测信号进行统计分析,两 种车型基本信息见表1,具体行驶线路见附录 A^[5,29]。其中中型卡车与重型卡车各有两个不同的 载货量等级,中型卡车的载货量等级分别为40%和 0%(空载);重型卡车的载货量等级分别为60%和 0%。为了研究不同强度的冲击或振动信号造成的 损伤占比,参考课题组前期将一段非高斯物流振动 信号分解成若干段高斯信号和一段冲击信号的思 路^[14],本文将整段信号分离成一段包含冲击的非高 斯信号与两段不同强度等级的高斯信号,并确定其 分段配比。

表1 两款车辆基本信息

	sic information of two	types of venicles
车辆特性	中型箱式卡车	重型箱式卡车
品牌	庆铃,中国	庆铃,中国
型号	QL5070XHKWRJ	QL5250XXYDTFZJ
悬吊系统	钢板弹簧	钢板弹簧
外观尺寸/mm³	$6790 \times 2110 \times 2900$	$11700 \times 2500 \times 3990$
额定载重/kg	3820	14620

信号的加速度均方根水平可以在一定程度上代 表该段信号的振动强度。采用0.5 s的移动窗宽,计 算整段振动信号的移动加速度均方根,按移动加速 度均方根的大小将信号重新整合排序得到重组信 号。此处以重型卡车空载行驶在高速公路上的信号 为例进行说明,图1(a)为整段原始信号。按移动加 速度均方根大小将整段信号分成高20%、中60%和 低20%的三段信号,为后续研究不同强度的振动信

号段造成的损伤提供前期准备工作。图1(b)为排 序后的重组信号,图中标注了不同长度信号的区段。 分别统计原始信号和各分段信号的均方根、峭度、偏 度、持续时间,如表2所示。

通过表2可以看出,中60%的信号和低20%的 信号其峭度在3附近,偏度接近于0,可以将其近似 认为是高斯信号。经过重组之后高20%的信号包 含了较大幅值的冲击,峭度大于3,被划分为非高斯 信号。对8条信号的各分段信号进行概率密度分布 统计,并使用高斯函数进行拟合。此处以空载重型 卡车行驶在高速公路上的信号为例进行说明,如 图 2 所示。发现高斯函数对中 60% 和低 20% 的信 号拟合程度总体较好。高20%的信号进行高斯拟 合后,由于其高幅值的冲击信号占比非常少,在直方 图中难以显示,对其尾部进行局部放大,可以看到具 有非高斯特性的拖尾现象。在高20%的信号的概 率密度图中可以看到低幅值的振动信号仍然存在较 大占比,这是因为在重组信号的过程中采用了0.5s 的移动窗宽进行加速度均方根计算并排序,导致实 际上高20%的信号中仍然存在一部分低幅值的振 动信号。经过分析,其余信号也均存在上述特征。 因此,我们可以将一段振动信号根据强度划分为高 20%的非高斯信号,中60%和低20%的近似高斯 信号。

1 ab. 2 Statistical parameters of each segment of 8 measured signals											
信号	分段	RMS/g	峭度 K	偏度S	持续 时间/s	信号	分段	RMS/g	峭度K	偏度S	持续 时间/s
40%-城市道	原始信号	0.2102	14.5017	0.0686	1020		原始信号	0.3519	3.8763	0.0267	600
	高 20%	0.2986	15.9882	0.1115	204	40%-高速公	高 20%	0.5254	2.6452	-0.0132	120
路-中型卡车	中 60%	0.1954	3.0378	0.0175	612	路-中型卡车	中 60%	0.3192	2.9349	0.0797	360
	低 20%	0.1314	3.2875	-0.0059	204		低 20%	0.1937	2.9439	0.0221	120
	原始信号	0.3086	11.0372	0.0250	1740		原始信号	0.3352	3.9237	-0.0022	840
0%-城市道 路-中型卡车	高 20%	0.4723	8.9211	0.0237	348	0%-高速公 路-中型卡车	高 20%	0.4624	3.3020	-0.0149	168
	中 60%	0.2744	3.1233	0.0156	1044		中 60%	0.3168	2.9615	0.0146	504
	低 20%	0.1656	3.3733	0.0143	348		低 20%	0.2169	3.2894	0.0064	168
	原始信号	0.1710	4.6367	0.0164	420		原始信号	0.2540	3.3637	0.0004	660
60%-城市道	高 20%	0.2374	3.9984	0.0339	84	60%-高速公	高 20%	0.3426	2.6939	0.0080	132
路-重型卡车	中 60%	0.1606	3.3016	-0.0014	252	路-重型卡车	中 60%	0.2445	2.8665	-0.0001	396
	低 20%	0.1119	3.5059	0.0635	84		低 20%	0.1603	3.1606	-0.0115	132
	原始信号	0.3446	4.6894	0.0237	960		原始信号	0.5350	4.4490	-0.0389	720
0%-城市道	高 20%	0.5176	3.2354	0.0233	192	0%-高速公	高 20%	0.7945	3.2638	-0.0558	144
路-重型卡车	中 60%	0.3141	3.2640	0.0146	576	路-重型卡车	中 60%	0.4815	3.0233	-0.0051	432
	低 20%	0.1728	3.4146	0.0274	192		低 20%	0.3229	3.1207	-0.0106	144

表 2 8条道路实测信号各分段的统计参数 Tab. 2 Statistical parameters of each segment of 8 measured signal

注:表中"40%-城市道路-中型卡车"的含义为40%载重的中型卡车行驶在城市道路上的振动信号,其余同理。

2 损伤分析

2.1 有限元分析模型的建立

为了分析物流中冲击和振动对产品造成的损伤,考虑到一般的产品由机体和零部件组成,本文构建的产品模型由一外框结构、一悬臂结构和一立柱结构组成。王志伟等^[30]使用该类模型进行了基于 G_{ms}-N的非高斯随机振动加速理论的有限元验证。 外框代表产品的机体,悬臂与立柱结构代表产品的 两个关键零部件,其分别连接一质量块,为零部件提 供一定的重量,如图3所示。产品各零部件的材料 参数见表3。仿真过程中输入的加速度激励为竖直 方向,悬臂构件能够评估产品关键件在振动过程中

图 3 产品有限元模型 Fig. 3 Finite element model of product

抵抗挠曲的能力,立柱构件能够反应关键件在振动 过程中受到的拉、压应力情况。考虑振动测试时将 产品固定在振动台上,避免振动过程中发生跳起现 象,设置产品与基础振动台之间、产品各零部件之间 均为绑定接触。

使用ANSYS Workbench的瞬态结构分析模块进行时域振动分析。为了缩短求解时间,对实测的

表3 产品各零部件尺寸及材料力学性能参数

第 37 卷

Tab. 3 Product size of each component and material mechanical property parameters											
零部件	* * *1	尺寸	┏ ┢/m	家 庄 /(l.g.m ⁻³)	近払い	杨氏模量/	切向模量/	屈服强度/			
	4/3 不平	$(长×宽×高)/m^3$	序度/Ⅲ	雷度/(kg·m)	伯亿亿	$10^{10} \mathrm{Pa}$	10 ⁸ Pa	10 ⁸ Pa			
外框	铝合金	$0.2 \times 0.15 \times 0.15$	0.0025	2770	0.33	7.1	5.0	2.8			
悬臂	铝合金	$0.02\! imes\!0.01\! imes\!0.01$	—	2770	0.33	7.1	5.0	2.8			
短柱	铝合金	$0.01 \times 0.01 \times 0.02$	—	2770	0.33	7.1	5.0	2.8			
重块	结构钢	$0.02\! imes\!0.02\! imes\!0.01$	—	7850	0.30	20.0	14.5	2.5			
基础	结构钢	$0.4 \times 0.36 \times 0.02$	_	7850	0.30	20.0	14.5	2.5			

道路加速度信号进行了节选,选段长为100 s。选段 选取了整段信号中的特征区段,加速度均方根和冲 击分布情况与整段信号较为接近,8条节选信号的 时域图见附录B。对这些选段信号按照0.5 s移动窗 宽的加速度均方根由大到小进行排序得到重组信 号,使用重组信号作为模型的激励信号进行分析,见 附录C。

仿真求解完成后将采集产品关键点的应力变化 情况,结合材料的疲劳寿命曲线(图4),使用雨流计 数法^[31]和Miner线性累积损伤准则计算产品在振动 试验中造成的损伤量。并分别计算高 20% 的非高 斯信号、中 60%和低 20% 的近似高斯信号造成的损 伤量和其损伤占比。考虑到高 20% 的非高斯信号 中还包含一些相对冲击来说稍低的较大幅振动信 号,同时也将计算最高 5%、最高 10% 的冲击信号造 成的损伤及其占比。使用 ANSYS 内置的铝合金的 *S*-*N*曲线数据进行拟合,其数学表达式可以写为:

 $S^{9}N = 4.9551 \times 10^{79} \tag{1}$

2.2 结果分析

2.2.1 中型卡车和重型卡车信号造成的损伤分析

仿真求解得到模型在不同道路信号下的Von-Mises等效应力云图,观察到产品在振动条件下的 应力最大点位于悬臂结构与外框的连接点处,如 图5所示,将此处作为产品的关键点,通过后处理提 取该关键点的应力响应信息。以空载中型卡车行驶 在城市道路上的节选信号为例,其节选信号原始排 序如图6所示,重组信号如图7所示;采集原始信号 和重组信号分别激励的关键点应力响应情况,分别 如图8和9所示。采用雨流计数法得到各信号段应 力的雨流幅值分布,如图10所示。采用Miner累积 损伤准则计算8条数据各信号段和原始信号的累积 损伤,如表4所示。

 (a) Von-Mises等效应力图及应力最大点
 (a) Von-Mises equivalent stress diagram and maximum stress point

(b) 关键件及关键点A(b) Key component and key point A

图5 产品的关键点

Fig. 5 Key points of product

Fig. 7 Time-domain diagram of recombined excitation signal

图8 原始激励信号下关键点A的应力响应

Fig. 9 Stress response of key point A under recombined excitation signal

据表4可知,8条信号的原始信号与重组信号的 损伤接近度基本达到80%以上。其中空载重型卡 车行驶在城市道路的信号接近度稍差,仅有 44.86%,这是由于排序会影响雨流计数过程循环的 终止条件,导致雨流幅值有所差异。同时,结合表3 中材料的屈服强度,关键点的最大应力情况远小于 材料的屈服应力,材料仍然处于线弹性阶段,信号的 重新排序对模型的损伤影响较小。

绘制高 5%、高 10%、高 20% 信号的累积损伤 图,中型卡车数据的损伤变化趋势如图 11 所示,重 型卡车数据的损伤变化趋势如图 12 所示。

中型卡车的4条信号均在信号前5%处损伤便 累计至90%以上,这是由于中型卡车的振动信号中 冲击成分占比普遍较少,冲击主要聚集在前5%的 信号中。高幅值的冲击造成了整个振动过程绝大多 数的损伤。

对于重型卡车,60% 载重高速公路信号存在 5% 左右的远高于整体振动水平的大幅冲击信号, 损伤在信号前5%处累积至95%以上。其余3条信 号的加速度幅值跨度很大,存在大量低幅值振动,较 多的高幅值振动(分布在前20%)。60% 载重的城 市道路信号存在5%的大幅冲击信号,损伤在信号 占比5%处累积到接近60%,随后高幅值振动持续 均匀的累积损伤直至接近90%。而空载城市道路、 高速公路信号的冲击占比约10%,冲击累积的损伤 在70% 左右,随后大量的高幅值振动持续均匀累积 损伤至接近80%。

Fig. 10 Rainflow stress amplitude distribution of key point A under the original excitation signal and each segment signal

									_
信号	参数	原始信号	重组信号	高5%	高10%	高 20%	中 60%	低 20%	_
	RMS/g	0.2284	0.2284	0.4832	0.4044	0.3421	0.2033	0.1413	
40%-城市道	峭度 K	10.1062	10.1062	7.7972	8.4400	8.8288	3.0332	3.1149	
路-中型卡车	损伤D/10 ⁻³⁶	4.3558	3.5892	3.5576	3.5851	3.5875	0.001733	0.00004	
	损伤占比/%	(82.40)	100	99.12	99.89	99.95	0.048	0.002	
	RMS/g	0.3413	0.3413	0.6336	0.5649	0.4975	0.3134	0.2001	
40%-高速公	峭度 K	4.1938	4.1938	3.0095	3.0898	3.2152	2.8442	3.0280	
路-中型卡车	损伤D/10 ⁻³⁸	1.7863	2.0414	1.8384	1.8844	1.9383	0.1015	0.0016	
	损伤占比/%	(85.72)	100	90.06	92.31	94.95	4.97	0.08	
	RMS/g	0.3215	0.3215	0.6485	0.5674	0.4925	0.2833	0.1835	
0%-城市道	峭度 K	6.9009	6.9009	4.9957	5.0395	5.1312	3.2413	3.0408	
路-中型卡车	损伤D/10 ⁻³⁴	2.8855	2.8027	2.5706	2.6999	2.7743	0.0282	0.0002	
	损伤占比/%	(97.13)	100	91.72	96.33	98.99	1.00	0.01	
	RMS/g	0.3250	0.3250	0.6773	0.5621	0.4769	0.2974	0.1881	
0%-高速公	峭度 K	6.8377	6.8377	4.7239	5.5128	5.8868	3.1104	3.2858	
路-中型卡车	损伤D/10 ⁻³⁴	1.8742	2.0304	2.0223	2.0260	2.0273	0.0030	0.0001	
	损伤占比/%	(91.67)	100	99.60	99.78	99.85	0.15	0.001	
	RMS/g	0.1704	0.1704	0.2671	0.2494	0.2321	0.1614	0.1146	
60%-城市道	峭度 K	4.3756	4.3756	3.8786	3.7122	3.7724	3.4132	3.1649	
路-重型卡车	损伤D/10 ⁻⁴⁰	1.4972	1.5901	0.9178	1.0630	1.4089	0.1760	0.0025	
	损伤占比/%	(93.80)	100	57.72	66.85	88.60	11.07	0.33	
	RMS/g	0.2852	0.2852	0.4314	0.4070	0.3749	0.2749	0.1982	
60%-高速公	峭度 K	3.4633	3.4633	3.8620	3.3744	3.2192	2.6996	2.9961	
路-重型卡车	损伤D/10 ⁻³⁷	2.3256	2.1048	2.0361	2.0379	2.1019	0.0027	0.0002	
	损伤占比/%	(95.92)	100	96.74	96.82	99.86	0.13	0.01	
	RMS/g	0.3347	0.3347	0.5955	0.5495	0.4938	0.3080	0.1786	
0%-城市道	峭度 K	4.5489	4.5489	2.9883	3.1343	3.2638	3.2702	3.2087	
路-重型卡车	损伤D/10 ⁻³⁷	3.7885	1.6996	0.3648	1.1273	1.3332	0.3655	0.0009	
	损伤占比/%	(44.86)	100	21.47	66.33	78.44	21.51	0.05	
	RMS/g	0.4501	0.4501	0.6630	0.6293	0.5826	0.4362	0.3203	
0%-高速公	峭度 K	3.3812	3.3812	2.7061	2.8364	2.9334	2.9876	2.9767	
路-重型卡车	损伤D/10 ⁻³⁷	7.9371	9.5503	3.3393	7.3230	7.7224	1.7928	0.0351	
	损伤占比/%	(79.68)	100	34.97	76.68	80.86	18.77	0.37	

表4 中型卡车和重型卡车各信号段的累积损伤

Tab. 4 Cumulative damage in each signal segment of medium trucks and heavy trucks

注:表中()中的数字为重组信号与原始信号损伤之间的接近度,接近度=1-重组信号与原始信号的误差。

图 11 中型卡车数据的损伤变化趋势

整体而言,中型卡车振动信号中的高幅值信号 占比较少,约占5%,但其幅值高,可达到3g~4g;中 型卡车高5%的信号造成了90%以上的损伤。重型 卡车除冲击成分之外还存在大量高幅值信号,其冲 击信号幅值较小,在2.0g~2.5g之间,重型卡车20% 的非高斯信号造成了约80%或更高的损伤。

2.2.2 5段典型道路信号造成的损伤分析

由上述结果可以看到,选段的冲击成分占比对

损伤累积的规律影响较大。不同车型以不同载重在 不同的道路上行驶,其采集到的振动信号也会有所 差异。为了更清晰地得到振动信号中冲击成分对损 伤累积的影响规律,节选了空载中型卡车行驶在城 市道路上的5段100s的典型特征振动信号,如图13 所示。信号1~5冲击信号的强度和数量逐渐增大 和增多,其中信号5蕴含一个巨大的冲击信号,超 过8g。

采用同样的方法得到5段典型道路信号的累计 损伤,考虑到某些信号段冲击含量较少,此处增加计 算高1%信号的损伤及其占比。表5列出了5段典 型特征信号各分段的损伤及其占比,并绘制他们的 损伤变化趋势图,如图14所示。 据表 5 和图 13~14 可知:信号 1 不包含较大的 冲击信号,整体接近于一个高斯信号,其损伤是缓慢 均匀累积的,信号前 20% 损伤累积达到 50% 以上; 信号 2 蕴含一个比较突出的冲击信号,冲击信号占 比较少,其损伤在信号 1% 处便迅速累积至 90% 以

		ruore cume		,e or e typical	•••••••••••••	- 5- 9 5		
信号	参数	重组信号	高1%	高5%	高 10%	高 20%	中 60%	后 20%
信号1	RMS/g	0.2954	0.4847	0.4445	0.4233	0.3926	0.2815	0.2110
	峭度 K	3.2802	2.2097	2.4178	2.5203	0.9876	2.9579	2.9876
	损伤D/10 ⁻³⁷	1.6101	0.0655	0.1677	0.4534	0.8330	0.7560	0.0211
	损伤占比/%	100	4.07	10.42	28.16	51.74	46.95	1.31
	RMS/g	0.3013	0.9378	0.6158	0.5142	0.4375	0.2752	0.1882
信見り	峭度K	7.4029	4.3850	5.8819	6.5235	6.7991	2.9713	3.0681
宿亏 4	损伤D/10 ⁻³⁴	2.7600	2.5178	2.7038	2.7184	2.7535	0.0063	0.0002
	损伤占比/%	100	91.22	97.96	98.49	99.76	0.23	0.01
	RMS/g	0.3215	0.8934	0.6485	0.5674	0.4925	0.2833	0.1835
台 旦 2	峭度K	6.9009	4.4289	4.9957	5.0395	5.1312	3.2413	3.0404
百分り	损伤D/10 ⁻³⁵	3.1308	1.1068	2.7125	2.9771	3.0902	0.0402	0.0004
	损伤占比/%	100	35.32	86.64	95.09	98.70	1.28	0.02
	RMS/g	0.3078	0.6828	0.6083	0.5524	0.4755	0.2698	0.1704
合 旦. 4	峭度K	5.6233	3.3123	3.3911	3.5393	3.8873	3.1589	3.2966
宿亏4	损伤D/10 ⁻³⁴	1.6834	0.1688	1.2130	1.5823	1.6616	0.0217	0.0001
	损伤占比/%	100	10.03	72.06	93.99	98.71	1.29	0.001
	RMS/g	0.3719	1.7256	0.9942	0.7919	0.6361	0.2923	0.1752
住밒┏	峭度K	38.6679	7.4871	14.3255	18.0809	22.0454	3.3746	3.1336
但至り	损伤D/10 ⁻³¹	3.4213	3.4058	3.4135	3.4211	3.4213	0.00005	0.00001
	损伤占比/%	100	99.55	99.77	99.99	99.99	0.01	0.001

表 5 5段典型特征信号的累积损伤 Tab. 5 Cumulative damage of 5 typical characteristic signals

图 14 5段典型特征信号的损伤变化趋势

Fig. 14 The damage variation trend of 5 typical characteristic signals

上;信号3蕴含相对较多的冲击信号,约占整体信号 的5%左右,损伤在前5%处累积至80%以上;信号 4蕴含大量的冲击信号,比较均匀地分布在整段信 号之间。其冲击信号占比约为10%,损伤在10%处 累积至90%以上;信号5的成分包括:一个巨幅冲击 信号,达到8g,少量的高幅值振动和大量的低幅值 振动。这个巨幅冲击几乎造成了整个振动过程绝大 多数的损伤,导致信号前1%处损伤便累积至接近 100%.

通过以上分析可以看出由冲击部分造成的损伤 基本可以达到80%以上。进一步证明,振动信号对 产品造成的损伤是由冲击成分主导的。

3 结 论

本文研究了物流非高斯随机振动对产品造成的 损伤规律。按加速度均方根的大小将实测的道路振 动信号分成一段非高斯信号和两段近似高斯信号。 使用有限元软件进行了时域振动分析,计算了非高 斯段和高斯段的损伤。得到如下结论:

(1)通过计算8条中型卡车和重型卡车道路信 号不同分段的统计参数,可将运输过程中的随机振 动信号根据振动强度划分为20%的蕴含冲击成分 的高强度非高斯信号、60%的中等强度高斯信号和 20%的低强度高斯信号。

(2)由于运输工具的悬挂系统不同,采集到的运 输工具振动信号中的冲击含量和幅值大小有所差 异。中型卡车数据冲击信号幅值大,可达到3g~ 4g,占比约5%。相对而言重型卡车冲击信号幅值 低,在2g~2.5g之间,但冲击占比更多。重型卡车 20%的非高斯信号中除10%的冲击成分之外还存 在约10%的高幅值振动信号,这些高幅值的振动同 样造成了较多的损伤。因此重型卡车10%的冲击 信号造成的损伤占比相较中型卡车5%的冲击信号 造成的损伤占比低。

(3) 振动过程中, 非高斯信号段蕴含了高强度的 冲击信号,造成了绝大部分的损伤,中型卡车高5% 的冲击信号造成了90%以上的损伤;重型卡车20% 的非高斯信号造成的损伤约80%或更高。

上述结论给出如下两点启示:首先,运输过程 中,要通过缓冲结构设计有针对性的降低冲击能量 对产品造成的影响;其次,在产品包装实验室评价 时,要重点关注冲击部分造成的损伤,对产品运输加 速随机振动试验进行改进。

参考文献:

- [1] Rouillard V, Sek M, Perry T. Analysis and simulation of road profiles [J]. Journal of Transportation Engineering, 1996, 122(3): 241-245.
- [2] Bruscella B, Rouillard V, Sek M. Analysis of road surface profiles[J]. Journal of Transportation Engineering, 1999, 125(1): 55-59.
- [3] Garcia-Romeu-Martinez M A, Rouillard V. On the statistical distribution of road vehicle vibrations [J]. Packaging Technology and Science, 2011, 24(8): 451-467.
- [4] Otari S, Odof S, Nolot J B, et al. Statistical characterization of acceleration levels of random vibrations during transport[J]. Packaging Technology and Science, 2011, 24(3): 177-188.
- [5] Zhou Hao, Wang Zhiwei. Measurement and analysis of vibration levels for express logistics transportation in South China [J]. Packaging Technology and Science, 2018, 31(10): 665-678.
- [6] Young D, Gordon R, Cook B. Quantifying the vibration environment for a small parcel system [C]//Institute of Packaging Professional, Herndon, VA, 1998: 157-171.
- [7] Singh J, Singh S P, Joneson E. Measurement and analysis of US truck vibration for leaf spring and air ride suspensions, and development of tests to simulate these conditions[J]. Packaging Technology and Science, 2006, 19(6): 309-323.
- [8] Wallin B. Developing a random vibration profile standard[C]//In IAPRI Symposium. Windsor, UK: IS-TA, 2007: 42-54.
- [9] Kipp W I. Random vibration testing of packaged products: considerations for methodology improvement[C]// In IAPRI World Conference on Packaging, Bangkok, Thailand, 2008: 1-12.
- [10] 蒋瑜,陈循,陶俊勇,等.超高斯伪随机振动激励信号 的生成技术[J]. 振动工程学报, 2005, 18(2): 179-183

JIANG Yu, CHEN Xun, TAO Junyong, et al. The

technique of generating super-Gaussian and quasi-random vibration exciting signals[J]. Journal of Vibration Engineering, 2005, 18(2): 179-183.

[11] 吴涵,冯伟杰.基于EMD的冲击信号提取方法及其在 设备故障诊断中的应用[J].现代制造工程,2007(4): 104-106.

WU Han, FENG Weijie. EMD based impulse identification and its application in friction fault diagnosis of rotation machine[J]. Modern Manufacturing Engineering, 2007(4): 104-106.

- [12] Rouillard V, Sek M A. Synthesizing nonstationary, non-Gaussian random vibrations [J]. Packaging Technology and Science, 2010, 23(8): 423-439.
- [13] Lepine J, Rouillard V, Sek M. On the use of machine learning to detect shocks in road vehicle vibration signals[J]. Packaging Technology and Science, 2017, 30(8): 387-398.
- [14] Zhou Hao, Wang Zhiwei. A new approach for road-vehicle vibration simulation[J]. Packaging Technology and Science, 2017, 31(5): 246-260.
- [15] 安刚, 龚鑫茂. 随机振动环境下结构的疲劳失效分析
 [J]. 机械科学与技术, 2000, 19(增刊1): 40-42.
 AN Gang, GONG Xinmao. Fatigue failure analysis of structures under random vibration environment[J]. Mechanical Science and Techonology, 2000, 19(Sup1): 40-42.
- [16] 王志伟, 咸德彬. 两层计算机堆码包装动力学试验研究[J]. 机械工程学报, 2017, 53(3): 90-99.
 WANG Zhiwei, QI Debing. Experimental study of dynamic response of two layers stacked packaging units of computers[J]. Journal of Mechanical Engineering, 2017, 53(3): 90-99.
- [17] Tovo R. Cycle distribution and fatigue damage under broad-band random loading [J]. International Journal of Fatigue, 2002, 24(11): 1137-1147.
- [18] Petrucci G, Zuccarello B. Fatigue life prediction under wide band random loading[J]. Fatigue and Fracture of Engineering Materials and Structure, 2004, 27(12): 1183-1195.
- [19] 张炜,王玺,徐志勇,等.基于频域分析方法的随机振动疲劳损伤研究[J]. 航空精密制造技术,2014,50
 (5):18-22.

ZHANG Wei, WANG Xi, XU Zhiyong, et al. Research on random vibration fatigue damage analysis of vehicle equipment based on frequency domain method [J]. Aviation Precision Manufacturing Technology, 2014, 50(5): 18-22.

[20] 周凌波. 航空典型结构件的随机振动疲劳寿命分析 [D]. 南京: 南京航空航天大学, 2014. ZHOU Lingbo. Random vibration fatigue life analysis of aircraft typical structures[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014.

- [21] 叶菲.随机振动荷载下结构的疲劳寿命研究[D]. 天 津:天津大学, 2016.
 YE Fei. Research on fatigue life for structures under random vibration loading[D]. Tianjin: Tianjin University, 2016.
- [22] Miles J W. On structural fatigue under random loading[J]. Journal of the Aeronautical Sciences, 1954, 21(11): 753-762.
- [23] Dirlik T. Application of computers in fatigue analysis[D]. Coventry: University of Warwick, 1985.
- [24] Chaudhury G. Spectral fatigue of broad-band stress spectrum with one or more peaks [C]//18th Annual Offshore Technology Conference. Houston, 1986:387-396.
- [25] 蒋培,温熙森,陈循,等.非高斯随机应力载荷频域疲 劳寿命估计方法[J]. 机械工程学报,2006,42(2): 51-56.
 JIANG Pei, WEN Xisen, CHEN Xun, et al. Spectral fatigue life esitimate under non-gaussion random srtess
 [J]. Chinese Journal of Mechanical Engineering, 2006,

42(2): 51-56.

- [26] 袁毅,程军圣.一种新的非高斯随机振动疲劳寿命估 计方法[J].振动与冲击,2014,33(18):209-213.
 YUAN Yi, CHEN Junsheng. A new method for fatigue life estimation under non-Gaussian random vibration[J]. Journal of Vibration and Shock, 2014,33(18):209-213.
- [27] 陈家焱,陈章位,贺惠农,等.非高斯随机振动试验并 行控制策略研究[J].机械工程学报,2012,48(4): 193-198.

CHEN Jiayan, CHEN Zhangwei, HE Huinong, et al. Concurrent control strategy research for non-Gaussian random vibration test [J]. Journal of Mechanical Engineering, 2012, 48(4): 193-198.

[28] 谢树强, 王斌杰, 王文静, 等. 基于动应力的地铁构架 疲劳损伤与疲劳寿命计算[J]. 机械工程学报, 2022, 58(4): 183-190.

XIE Shuqing, WANG Binjie, WANG Wenjing, et al. Calcultion for fatigue damage and fatigue life of metro bogie based on dynamic stress[J]. Journal of Mechanical Engineering, 2022, 58(4): 183-190.

- [29] 周浩.公路运输包装随机振动分析与模拟方法研究
 [D].广州:暨南大学, 2017.
 Zhou Hao. Study on random vibration analysis and simulation method of road transport packaging [D]. Guang-zhou: Jinan University, 2017.
- [30] 王志伟,刘博,王立军.基于 G_{rms}-N的非高斯加速随机 振动理论方法的有限元验证 [J].应用力学学报, 2020, 37(6): 2386-2394.

WANG Zhiwei, LIU Bo, WANG Lijun. The finite element verification of the non-Gaussian acceleration random vibration theory method based on $G_{\rm rms}$ -N[J]. Chinese Journal of Applied Mechanics, 2020, 37(6): 2386-2394.

[31] Dowing S D, Socie D F. Simple rainflow counting algorithms[J]. International Journal of Fatigue, 1982, 4 (1): 31-40.

Damage analysis of products under logistics non-Gaussian vibration

XIE Jia-lin^{1,2,3}, WANG Zhi-wei^{1,2,3}

(1.College of Packaging Engineering, Jinan University, Zhuhai 519070, China;

2.Key Laboratory of Product Packaging and Logistics of Guangdong Higher Education Institutes, Jinan University,

Zhuhai 519070, China; 3.Packaging Engineering Institute, Jinan University, Zhuhai 519070, China)

Abstract: The shock signals in the process of road transportation cause the non-Gaussian characteristics of random vibration process. In order to study the impact of shock on product damage, the measured 8 vibration signals of medium truck and heavy truck are statistically analyzed. The vibration signals are divided into 20% high-intensity non-Gaussian signal, 60% medium-intensity Gaussian signal and 20% low-intensity Gaussian signal. The finite element software is used for time-domain vibration analysis to calculate the damage proportion of each signal segment. The results show that the non-Gaussian signal contains high intensity shock signal, which causes the most of damage. The shock amplitude of medium truck vibration data is large and accounts for a small proportion, while the shock amplitude of heavy truck is relatively low and accounts for a large proportion. The higher 5% shock signal for medium trucks caused more than 90% of the damage; The 20% non-Gaussian signal of heavy truck contains 10% higher amplitude vibration besides 10% shock component, and the damage caused by 20% non-Gaussian signal is about 80% or higher. In the whole transport vibration process, the shock signal dominates the accumulation of damage with less content.

Key words: random vibration; road transport; non-Gaussian; fatigue damage; shock

作者简介:谢嘉琳(1999一),女,硕士研究生。E-mail:xiejl1627@163.com。 通讯作者:王志伟(1963一),男,博士,教授。E-mail:wangzw@jnu.edu.cn。

附录A:

(b) 高速公路-中型卡车线路图 (b) Highway-route map for medium truck

(h) 0%-高速公路-重型卡车 (h) 0%-highway-heavy truck (g) 0%-city road-heavy truck 图 B1 中型卡车和重型卡车的节选原始激励信号

(g) 0%-城市道路-重型卡车

Fig. B1 The original excitation signal of medium trucks and heavy trucks

附录C:

Fig. C1 Recombination excitation signal of medium trucks and heavy trucks