一种增强负泊松比结构的压电俘能器的 设计与分析

陆亚平1,时 岩1,李文彬1,高 强2

(1.南京理工大学机械工程学院,江苏南京210094; 2.东南大学机械工程学院,江苏南京211189)

摘要:考虑到传统压电悬臂梁存在固有频率高,输出性能低的缺点,本文基于增强负泊松比结构设计了一种压电俘 能器,在弹性基板中引入了负泊松比结构和X型肋骨。利用有限元方法建立了压电俘能器的动力学模型;通过数值 方法进行了模态和压电耦合分析,并对增强负泊松比结构的俘能器进行了参数分析;搭建了实验平台,制作了压电 俘能器样品,对输出性能进行验证。研究结果表明:与传统平板结构俘能器相比,增强负泊松比结构俘能器的一阶 谐振频率低,输出电压和功率高,X型肋骨的加入提高了结构的刚度和非线性;相比于负泊松比结构的俘能器,X型 肋骨的加入不仅改善了结构的疲劳性能,还拓宽了工作带宽。

关键词: 压电俘能器; 负泊松比结构; 性能分析
 中图分类号: TN384; TN712⁺.5
 文献标志码: A
 DOI: 10.16385/j.cnki.issn.1004-4523.2024.07.010

文章编号:1004-4523(2024)07-1182-09

引 言

在物联网社会中,构建传输和接收信息的无线 传感器网络至关重要^[1],传统的无线传感器大多采 用化学电池供电,这会带来电池更换困难、污染环境 等诸多问题,而且体积较大,限制了无线传感网络的 微型化和集成化^[2],因此,如何从周围环境中获取能 量引起了广泛关注。环境中的能源包括太阳能、风 能、振动能等,其中,振动能量因其能量密度高、能源 丰富、限制少等特点而备受关注。一般有三种从环 境中获取振动能量的方式:电磁式^[3]、静电式^[4]和压 电式^[5]。压电式俘能器由于成本低廉、结构简单、易 于集成等优点,广受国内外学者的青睐,但其输出功 率低,阻碍了其在电力市场的应用。因此,如何有效 提高压电俘能器的输出性能成为国内外研究的热点 问题^[67]。

研究人员从材料、电路和结构等角度探索了多种方法来提高压电俘能器的输出性能:Zhang等^[8]研究了具有定向孔隙率的凝固铸造 PZT 基材料的压电性能及其各向异性因子,这种材料具有更大的压电灵敏度且压电各向异性;陈圣兵等^[9]利用电磁振荡和压电材料机电耦合特性在超材料内部形成可调谐局域共振带隙,满足大柔性结构振动与噪声控制中的低频宽带需求;张森等^[10]设计了一种由能量收

集部分、同步开关控制电压生成部分和直流供电部 分组成的自供电式 SSHI 电路:采用二阶 R-C 移向 电路、过零比较器和异或门电路产生的输出电压来 控制双向开关适时闭合,运用全桥整流能量收集电 路为所用的低功耗电子器件供电;Xie 等^[11]设计了 一种由L型压电耦合梁构成的高效圆柱体能量采集 器,提高了压电片上的应力分布,有效提高了俘能器 的输出。一些学者将负泊松比结构引入到压电俘能 器的弹性基板中,与传统的平板结构压电俘能器相 比,负泊松比结构的弹性基板可以在纵向拉伸下横 向扩张,进而带动附着在弹性基板上的压电材料在 横向和纵向都产生形变,从而提高压电俘能器的输 出功率。Ferguson等^[12]把俘能器的弹性层与一种内 凹蜂窝负泊松比结构相结合,经过建模和实验验证, 其输出功率为191 μW,这种增加了d₃₂模式的输出 比传统的da1单一模式的俘能器高出14.4倍。张璇 等[13]提出了一种具有负泊松比特性的圆弧蜂窝压电 超材料结构,并基于压电超材料的本构方程和相应 边界条件,分析了力电耦合下该压电超材料的力电 性能; Ichige 等^[14]设计了用于压电俘能器的弹性基 板的负泊松比结构,并且通过改变负泊松比结构的 周期性结构的尺寸来改变弯曲刚度以调节装置的性 能,分析结果表明,与具有最大尺寸的负泊松比结构 的压电能量收集装置相比,具有最小尺寸的负泊松 比结构的压电振动俘能器的共振频率降低 16%,发

收稿日期: 2022-08-17; 修订日期: 2022-11-17

基金项目:国家自然科学基金资助项目(52102421);航空科学基金资助项目(2022Z068069001)。

电量增加了100%。Chen等^[15]设计了一种梯度负泊 松比结构的压电俘能器,通过在弹性基体中设计变 宽度的负泊松比结构,使俘能器在受到激励后悬臂 梁的应变分布更加均匀,输出功率高于传统负泊松 比结构的俘能器。

悬臂梁结构的压电式俘能器因其构造相对简单 且制备方便,是目前最常见的形式,其主要由弹性基 体、压电材料、环氧树脂层和质量块组成,压电材料 通过环氧树脂层与弹性基体粘合,质量块放置在悬 臂梁的自由端以降低压电俘能器的固有频率。本文 提出一种增强负泊松比结构的压电俘能器,在弹性 基板中引入了负泊松比结构和X型肋骨;通过有限 元软件建立动力学模型,分析了俘能器的输出性能, 并建立了相同尺寸的平板结构进行对比;最后对增 强负泊松比结构进行参数分析,验证了其可有效提 高压电俘能器的输出性能。

1 工作原理及结构设计

压电俘能器的工作原理是基于压电材料的正 压电效应,在压电材料受到外界激励而发生形变时,材料内部发生极化现象,引起材料的两个表面 产生相异电荷,从而实现机械能到电能的转换。图 1为本文提出的增强负泊松比结构的压电俘能器。 与传统悬臂梁结构的压电俘能器不同的是,本文在 平板结构的弹性基体中引入了负泊松比结构和 X 型肋骨。如图2所示,该悬臂梁结合了负泊松比结 构和 X 型肋骨,每个单元结构主要包括肋骨宽度 $T_1,$ 负泊松比结构宽度 T_2 和内凹角 θ 等设计参数,

图 1 增强负泊松比结构的压电俘能器 Fig. 1 Piezoelectric energy harvesters with enhanced negative Poisson's ratio structure

Fig. 2 Cantilever beam with enhanced negative Poisson's ratio structure and unit structure

通过沿1轴和2轴方向阵列形成增强负泊松比 结构。

当压电俘能器在 d₃₁模式工作时,即沿1轴方向 的应力产生沿3轴方向的电场,同理,沿2轴方向的 应力可以在 d₃₂模式下进行发电。因此,俘能器的最 大输出功率与平均应力分量之间的关系可以认 为是:

$$P \propto (\bar{\sigma}_{11} + \bar{\sigma}_{22})^2 \tag{1}$$

式中 ō₁₁和 ō₂₂分别为压电材料中的平均纵向应力 和平均横向应力。

这种增强负泊松比结构有两个优点:(1)与传统 平板结构的俘能器相比,内凹蜂窝结构具有负泊松 比的结构特性,可以同时向两个方向拉伸压电材料, 增加了 d₃₂模式的发电,从而增加了输出功率;(2)增 强负泊松比结构的刚度低于同等厚度的平板结构, 从而有利于将应力集中在压电元件上,这种集中效 应有助于增加俘能器的输出特性。

2 有限元模型

在 Comsol Multiphysics 仿真软件中建立有限 元模型,为了验证增强负泊松比结构的优势,还分 别建立了弹性基体为平板结构和负泊松比结构的 俘能器进行对比分析。如图3所示,三种弹性基板

具有相同的长度,宽度和厚度。弹性基体材料为不 锈钢,整体尺寸为71 mm×30 mm×0.5 mm,压电 材料为 PZT-5A,整体尺寸为60 mm×30 mm× 0.2 mm,负泊松比结构宽度为0.6 mm,负泊松比结 构内凹角为60°,其中增强负泊松比结构的肋骨宽 度为0.7 mm,质量块材料为磁铁,整体尺寸为 30 mm×10 mm×4 mm,环氧树脂作为胶水层粘连 压电材料的下表面和弹性基体的上表面,其几何外 形与弹性基体相同,设置与环氧树脂接触的整个压 电片下方为接地端,上方为另一电极端。材料属性 如表1所示。

	秋1 初杆周江		
	Tab. 1 Material prop	erties	
部件	属性	数值	
	密度/(kg•m ⁻³)	7850	
弹性基体	泊松比	0.3	
	杨氏模量/GPa	200	
	密度/(kg•m ⁻³)	6500	
质量块	泊松比	0.34	
	杨氏模量/GPa	160	
	密度/(kg•m ⁻³)	7750	
		1.64×10^{-11}	
		-5.74×10^{-12}	
	柔度常数/Pa ⁻¹	-7.22×10^{-12}	
		1.64×10^{-11}	
		-7.22×10^{-12}	
		1.88×10^{-11}	
压电片		4.75×10^{-11}	
		4.75×10^{-11}	
		4.43×10^{-11}	
		-1.71×10^{-10}	
		-1.71×10^{-10}	
	耦合系数/(C•N ⁻¹)	3.74×10^{-10}	
		5.84×10^{-10}	
		$5.84 imes 10^{-10}$	
	密度/(kg•m ⁻³)	1100	
环氧树脂	泊松比	0.35	
	杨氏模量/GPa	0.02	

++ *기 트 W

主 1

3 输出响应分析

3.1 压电耦合模型的分析

对平板结构、负泊松比结构、增强负泊松比结构 的压电俘能器进行模态分析,计算出三种结构的一 阶共振频率分别为110.14,51.88和62.24 Hz,这表 明负泊松比结构有利于降低结构的一阶共振频率。 日常环境中的频率主要在200 Hz以下,因此主要利 用俘能器一阶谐振频率附近的振动能量,以便在较 低的谐振频率下获得更好的电学响应特性。

沿3轴方向施加1m/s²的加速度,设置激励频 率在三种结构的一阶共振频率附近,图4和5为三种 俘能器在相同激励下弹性基体的位移图,从图中可 以发现三种结构沿1轴的位移都是正的,即在1轴方 向是拉伸的,其中平板结构沿2轴的位移是负的,即 沿2轴方向是收缩的,表现出正泊松比效应,而负泊 松比结构和增强负泊松比结构沿2轴的位移都是正

Fig. 4 The displacement distributions of three substrates along 1-axis

Fig. 5 The displacement distributions of three substrates along 2-axis

的,即沿2轴方向也是拉伸的,表现出负泊松比效 应,增强负泊松比结构沿2轴的位移量略低于负泊 松比结构。

图 6 比较了三种压电俘能器上压电片的应力分 布,可以发现负泊松比结构和增强负泊松比结构上 的应力分布明显高于平板结构,增强负泊松比结构 由于加入了 X 型肋骨,提高了结构的刚度,压电片上 的应力分布略低于负泊松比结构。此外,表2总结 了三种结构的压电材料沿1轴(ō₁₁)和2轴(ō₂₂)的平 均应力,可以看出平板结构上压电片的ō₁₁和ō₂₂具

harvesters

有相反的符号,且 $\bar{\sigma}_{22}$ 与 $\bar{\sigma}_{11}$ 相比,几乎可以忽略不 计,因此 d_{31} 模式主导其功率输出;而在负泊松比结 构和增强负泊松比结构中,由于负泊松比结构的作 用, $\bar{\sigma}_{22}$ 和 $\bar{\sigma}_{11}$ 符号相同,且 $\bar{\sigma}_{22}$ 大大增加,增加了 d_{32} 的 发电模式,根据式(1),这将有利于提高压电俘能器 的输出功率。

表 2 压电片沿 1 轴和 2 轴的平均应力 Tab. 2 Average stress of piezoelectric patches along axes 1 and 2

俘能器结构	$ar{\sigma}_{\scriptscriptstyle 11}/{ m Pa}$	$ar{\sigma}_{\scriptscriptstyle 22}/{ m Pa}$
平板结构	20054	-392.6
负泊松比结构	37445	3645.7
增强负泊松比结构	36684	1922.4

为了比较三种结构的发电性能,利用仿真软件 进行了压电耦合分析,首先计算出三种压电俘能器 在1m/s²加速度下的输出电压-频率响应曲线如图7 所示,可以看出三种结构的输出电压分别在一阶共 振频率110.14,51.88和62.24Hz时达到了最大值 16.99,24.03和20.62V。比较发现,负泊松比结构 和增强负泊松比结构相比于平板结构,输出电压分 别提高了41.44%和21.37%。以无线传感器节点的 最低工作电压1V作为有效电压的最低标准,三种 结构的有效带宽分别为5.99,3.89和6.53 Hz。对比 输出电压和带宽可以发现,增强负泊松比结构的最 大输出电压略低于负泊松比结构,但X型肋骨的加 入,增加了结构的非线性,有效带宽拓宽了67.87%。 在三种俘能器各自的谐振频率下,以相同的步长 0.001 s进行时域分析,时域响应的结果如图8所示, 可以看出三种结构的俘能器分别在2.5,3.6和2.9 s 时达到最大的输出电压 17.37, 24.79 和 19.58 V, 与

Fig. 7 Output voltage-frequency response curve

Tab 3

扫频结果基本一致。

在压电俘能系统中,外接负载阻抗匹配可以有 效增加输出能量。在三种结构的一阶共振频率下, 外接不同负载后的输出功率-负载曲线如图9所示, 可以看出三种结构的负载响应曲线都是先升高,达 到最佳负载后逐渐下降,趋于平缓。三种俘能器的 质量属性如表3所示,其中平板结构(质量为27.51 g)在最佳负载 80 kΩ下的最大功率密度(单位质量 上的输出功率)达到了57.26 μW/g,增强负泊松比 结构(质量为19.94 g)在最佳负载130 kΩ下的最大 功率密度达到了106.03 μW/g,负泊松比结构(质量 为18.30 g)在最佳负载 60 kΩ下的最大功率密度达 到了123.76 μW/g。增强负泊松比结构的最大输出 功率虽然略低于负泊松比结构,但在较大的负载范

表3 三种俘能器的质量属性

Tuble Muss properties of three kinds of chergy hur resters						
俘能器结构	弹性基板/g	环氧树脂/g	压电材料/g	质量块/g	总体质量/g	
平板结构	16.72	0.20	2.79	7.8	27.51	
负泊松比结构	7.64	0.07	2.79	7.8	18.30	
增强负泊松比结构	9.26	0.09	2.79	7.8	19.94	

Mass properties of three kinds of energy harvesters

弹性基板的低刚度也会提高俘能器的输出性能,因此设计了一个与负泊松比结构刚度接近的平板结构的俘能器作为参照组。通过有限元分析,同刚度的平板结构的俘能器的一阶谐振频率为45.23 Hz,低于负泊松比结构的俘能器的一阶共振频率51.88 Hz,其输出特性的对比如图10所示,可以看出,降低刚度后的平板结构的俘能器能够有效提高输出特性,但其输出还是远低于同刚度的负泊松比结构的俘能器。

弹性基板的低刚度会在提高俘能器输出性能的 同时,加快结构疲劳破坏,对传统负泊松比结构和增 强负泊松比结构的压电俘能器进行疲劳性分析,首 先将弹性基体材料的S-N曲线导入到有限元仿真软 件中,在仿真软件中设置加速度从负方向到正方向 为一个循环,循环次数为10⁶,默认结构从内表面先 发生破坏,计算得出的弹性基体的应力分布如图11 所示,可以发现负泊松比结构和增强负泊松比结构 的最大应力都发生在悬臂梁根部的顶角处,且负泊 松比结构的最大应力大于增强负泊松比结构。失效 循环次数响应如图12所示,其中增强负泊松比结构 中应力最大处最少能够循环2.17×10⁵次,而负泊松 比结构最少能循环1.17×10⁵次,负泊松比结构的强

Fig. 10 Comparison diagram of approximate stiffness

发生破坏。

Fig. 12 Fanure cycle counts response diagra

3.2 肋骨宽度对输出特性的影响

为研究不同的X型肋骨的宽度对俘能器的输出 特性的影响,在保持其他设计参数不变的同时,分别 建立了不同X型肋骨宽度的压电俘能器的有限元模 型,研究了不同宽度对输出性能的影响,图13(a)是 肋骨宽度为0.4~0.9 mm的俘能器的一阶共振频率 图;图13(b)绘制了肋骨宽度为0.4~0.9 mm的俘能 器在相同激励下的输出电压-频率响应曲线;图13 (c)绘制了不同肋骨宽度俘能器的单位质量下的输 出功率密度-负载曲线;图13(d)总结了不同肋骨宽 度的俘能器在最佳负载时的最大输出功率密度,结 果表明随着肋骨宽度的增加,停能器的一阶共振频率 逐渐升高,最大输出电压和输出功率密度随之下降, 这是由于肋骨宽度的增加提高了整体结构的刚度,导 致在相同的激励下,压电片上的应力、应变减小,且压 电俘能器的输出功率密度与应力的大小呈正相关,所 以输出功率密度下降。其中,在肋骨宽度为0.4 mm 和外接电阻为130 kΩ时的最大输出电压和最大功率 密度分别达到了21.37 V和113.43 µW/g。

3.3 负泊松比结构的宽度对输出特性的影响

在保持其他设计参数不变的同时,分别设计了

Fig. 13 The output response of energy harvester for rib widths from 0.4 to 0.9 mm

不同宽度的负泊松比结构压电俘能器,图14(a)是 负泊松比结构宽度为0.4~0.8 mm的俘能器的一阶 共振频率图;图14(b)绘制了负泊松比结构宽度为 0.4~0.8 mm的俘能器在相同激励下的输出电压-频 率响应曲线;图14(c)绘制了不同负泊松比结构宽 度的俘能器单位质量下的输出功率密度-负载曲线; 图14(d)总结了不同负泊松比结构宽度的俘能器在 最佳负载时的输出功率密度。结果表明随着负泊松 比结构宽度的增加,俘能器的一阶共振频率逐渐升 高,最大输出电压和输出功率密度随之下降,这是由 于负泊松比结构宽度的增加提高了结构的刚度,降

Fig. 14 The output response of energy harvester for negative Poisson's ratio structure widths from 0.4 to 0.8 mm

低了压电片上的应力分布。其中,在负泊松比结构 宽度为0.4 mm和外接电阻为130 kΩ时的最大输出 电压和最大功率密度分别达到了21.39 V和 113.825 μW/g。

3.4 负泊松比结构的内凹角度对输出特性的影响

设计了不同负泊松比结构内凹角度的压电俘能器,图 15(a)是负泊松比内凹角度为 50°~70°的俘能器一阶共振频率图;图 15(b)绘制了负泊松比结构内 四角度为 50°~70°的俘能器在相同激励下的输出电

Fig. 15 The output performance of energy harvester for negative Poisson's ratio structure inner concave angle from 50° to 70°

压-频率响应曲线;图 15(c)绘制了不同负泊松比结构 内凹角度的俘能器单位质量下的输出功率密度-负载 曲线;图 15(d)总结了不同负泊松比结构内凹角度的 俘能器在最佳负载时的输出功率密度。可以看出随 着负泊松比结构内凹角度的增加,俘能器的一阶共 振频率逐渐升高,但最大输出电压和输出功率密度 先上升后下降,在内凹角为65°时达到最大值 21.48 V,其中在最佳负载130 kΩ时的最大功率密度 为107.97 μW/g。

4 实验验证

根据压电俘能器的结构参数设计并制作了实验 平台如图16所示。俘能器通过夹具固定在激振器 上,激光测振仪用来监测加速度和激励频率并将其 反馈给计算机以控制信号发生器。振动激励由信号 发生器控制,驱动激振器进行扫频实验。此外,压电 贴片与一个电阻负载相连,以量化产生的功率,输出 电压通过示波器显示。

Fig. 16 Experimental platform

以上述参数分析中输出功率密度最大的增强负 泊松比结构的压电俘能器尺寸制作样品进行实验(肋 骨宽度 T₁=0.6 mm,负泊松比结构宽度 T₂=0.4 mm, 负泊松比结构内凹角度 θ =60°),同时还制作了相同尺 寸的平板结构和负泊松比结构的压电俘能器进行对 比。通过激光测振仪监测振动状态并反馈给信号发 生器,使得激振器的激励加速度始终保持为1 m/s²,调 节激振器的激振频率进行扫频实验,达到俘能器的一 阶共振频率,使俘能器发生共振,在谐振频率的激励 下,将俘能器与不同阻值大小的负载相连,以寻求输 出性能最佳的负载。实验结果如图 17 和 18 所示,可 以看出压电俘能器的仿真结果和实验结果基本吻合, 三种俘能器的输出电压都随着负载的增加而增加,其 仿真的最大输出功率密度分别为 57.26,123.76 和 113.88 μW/g, 略高于实验结果的 50.57, 115.26 和
105.42 μW/g。实验中的误差主要是由制造精度、不
完善的边界条件和测试时压电俘能器的预变形引
起的。

Fig. 17 Output voltage-load response curve

Fig. 18 Output power density-load response curve

5 结 论

本文提出了一种增强负泊松比结构的压电俘能器,建立了俘能器的动力学模型,并对整体结构进行 了模态和压电耦合模型分析,研究了不同结构参数 对压电俘能器输出特性的影响。主要结论如下:

(1)在弹性基体加入负泊松比结构的压电俘能器能有效降低结构的一阶共振频率,更加容易满足环境中的多种低频下的激励共振,且最大输出电压为20.62 V,最大输出功率密度为106.03 μW/g,高于同等尺寸的平板结构的压电俘能器。

(2)增强负泊松比结构的压电俘能器的输出略 低于同等尺寸的负泊松比结构的俘能器,但有效带 宽拓宽了67.87%,有较好的负载适应性,疲劳性能 也有较大的提升。

(3)肋骨宽度和负泊松比结构宽度的增加会提 高俘能器的一阶共振频率和刚度,但降低俘能器的 输出性能,压电俘能器中的弹性基体在肋骨宽度 T_1 =0.6 mm, 负泊松比结构宽度 T_2 =0.4 mm, 负泊 松比结构内凹角度 θ =60°时的功率密度最高,达到 了 113.825 μ W/g。

参考文献:

- [1] Wu Qingqing, Zhang Rui. Towards smart and reconfigurable environment: intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106-112.
- [2] 袁毅,游镇宇,陈伟球.压电超构材料及其波动控制研究:现状与展望[J].力学学报,2021,53(8):2101-2116.
 Yuan Yi, You Zhenyu, Chen Weiqiu. Piezoelectric

metamaterials and wave control: status quo and prospects[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2101-2116.

- [3] Carneiro P, Dos Santos M P S, Rodrigues A, et al. Electromagnetic energy harvesting using magnetic levitation architectures: a review[J]. Applied Energy, 2020, 260: 114191.
- [4] Rodrigues C, Nunes D, Clemente D, et al. Emerging triboelectric nanogenerators for ocean wave energy harvesting: state of the art and future perspectives [J]. Energy and Environmental Science, 2020, 13(9): 2657-2683.
- [5] Sezer N, Koç M. A comprehensive review on the state-of-the-art of piezoelectric energy harvesting[J]. Nano Energy, 2020, 80: 105567.
- [6] Wang Junlei, Geng Linfeng, Ding Lin, et al. The stateof-the-art review on energy harvesting from flow-induced vibrations[J]. Applied Energy, 2020, 267: 114902.
- [7] 刘久周,张凤玲,辛健强,等.一种非线性宽频压电能量收集系统的动力学特性分析[J].振动工程学报, 2021,34(3):567-576.

Liu Jiuzhou, Zhang Fengling, Xin Jianqiang, et al. Dynamic characteristics of a nonlinear wideband energy harvester based on piezoelectric material[J]. Journal of Vibration Engineering, 2021, 34(3): 567-576.

- [8] Zhang Y, Topolov V Y, Isaeva A N, et al. Piezoelectric performance of PZT-based materials with aligned porosity: experiment and modelling[J]. Smart Materials and Structures, 2019, 28(12): 125021.
- [9] 陈圣兵,张浩,宋玉宝,等.谐振放大压电声学超材料 梁带隙特性研究[J].振动工程学报,2022,35(3): 550-556.

Chen Shengbing, Zhang Hao, Song Yubao, et al. Band-gap properties of piezoelectric acoustic metamaterial beams with amplified resonant shunts[J]. Journal of Vibration Engineering, 2022, 35(3): 550-556.

[10] 张淼, 孟庆丰, 王宏金. 自供电式并联电感同步开关

Zhang Miao, Meng Qingfeng, Wang Hongjin. Self-powered synchronized switch control of parallel inductor for piezoelectric energy harvesting circuit[J]. Journal of Vibration and Shock, 2015, 34(9): 120-124.

- [11] Xie Xiangdong, Wang Zijing, Liu Dezheng, et al. An experimental study on a novel cylinder harvester made of L-shaped piezoelectric coupled beams with a high efficiency[J]. Energy, 2020, 212: 118752.
- [12] Ferguson W J G, Kuang Y, Evans K E, et al. Auxetic structure for increased power output of strain vibration energy harvester [J]. Sensors and Actuators A: Physical, 2018, 282: 90-96.
- [13] 张璇,刘海涛.负泊松比圆弧蜂窝压电超材料的力电 性能研究[J].燕山大学学报,2021,45(5):424-429.
 Zhang Xuan, Liu Haitao. Study on electromechanical properties of arc honeycomb piezoelectric metamaterials with negative Poisson's ratio[J]. Journal of Yanshan University, 2021, 45(5): 424-429.
- [14] Ichige Ryo, Kuriyama Nobuaki, Umino Yohei, et al. Size optimization of metamaterial structure for elastic layer of a piezoelectric vibration energy harvester[J]. Sensors and Actuators A: Physical, 2021, 318: 112488.
- [15] Chen Keyu, Fang Shitong, Gao Qiang, et al. Enhancing power output of piezoelectric energy harvesting by gradient auxetic structures[J]. Applied Physics Letters, 2022, 120(10): 103901.

Design and analysis of a piezoelectric energy harvester with enhanced negative Poisson's ratio structure

LU Ya-ping¹, SHI Yan¹, LI Wen-bin¹, GAO Qiang²

(1.School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;2.School of Mechanical Engineering, Southeast University, Nanjing 211189, China)

Abstract: The existing rectangular piezoelectric cantilever beam has the shortcomings of high intrinsic frequency and low output performance. In this paper, a piezoelectric energy harvester based on the enhanced negative Poisson's ratio structure is designed by combining a negative Poisson's ratio structure and X-shaped ribs in an elastic substrate. The dynamics model of the energy harvester is established by using the finite element method for the piezoelectric coupling analysis and parametric analysis. The prototypes are fabricated to verify the design. The results show that the energy harvester based on enhanced negative Poisson's ratio structure has a low first-order resonant frequency, high output voltage and power, and the addition of X-rib increases the stiffness and nonlinearity of the structure. Compared with the conventional negative Poisson's ratio structure, the introduction of X-rib not only improves the fatigue performance of the structure, but also broadens the bandwidth by 67.87%. The energy harvester based on enhanced negative Poisson's ratio structure is important for solving the power supply problem of wireless sensors and portable electronic mobile devices in the future.

Key words: piezoelectric energy harvester; negative Poisson's ratio structure; performance analysis

作者简介:陆亚平(1998-),男,硕士研究生。E-mail: luyp0321@163.com。 通讯作者:时 岩(1979-),男,博士,副教授。E-mail: peter19799275@163.com。