上覆土层对倾斜液化场地-桩基-结构地震反应的 影响研究

张小玲1.2,房丽净1.2,许成顺1.2,贾科敏1.2

(1.北京工业大学建筑工程学院,北京 100124;2.北京工业大学城市与工程安全减灾教育部重点实验室,北京 100124)

摘要:倾斜液化场地桩基的地震动力响应是岩土抗震工程领域关注的重要问题。本文依据振动台模型试验,基于 OpenSees软件平台建立了倾斜液化场地-群桩-结构相互作用二维整体化数值模型,模型中考虑了桩-土接触的非线 性以及土层的剪切局部化,并通过与振动台试验结果进行对比,验证了本文数值模拟方法的合理性和有效性。在此 基础上,建立了针对实际场地的典型倾斜液化场地-群桩-结构相互作用有限元模型,讨论了不同上覆土层参数对场 地及结构体系地震反应的影响。计算结果表明:随着上覆土层厚度的增大,饱和砂土层中的孔压比减小,土体的水 平残余位移减小,同时桩身位移以及桩基曲率均有所减小;上覆土层强度对桩基动力反应的影响更加显著;上覆土 层厚度的增加可以降低土层的液化程度并提高桩基的受力性能。

关键词:地震响应;桩-土相互作用;上覆土层;倾斜液化场地;数值模拟
中图分类号:TU435;TU473.1 文献标志码:A 文章编号:1004-4523(2024)12-2055-11
DOI:10.16385/j.cnki.issn.1004-4523.2024.12.007

引 言

桩基础是在岩土工程中常见的基础形式,因其 有良好的工程特性和抗震性能而在工程界得到广泛 的应用。然而近年来多次地震震害表明,在具有显 著液化潜力的液化侧向扩展场地中,桩基础易发生 破坏,进而引发上部结构的失效^[1]。如1964年日本 新潟地震和美国阿拉斯加地震、1976年中国唐山地 震、1995年的日本神户地震和2011年新西兰地震等 均出现液化场地侧向扩展导致桩基础破坏的案 例^[2]。针对这一问题国内外众多学者通过模型试 验、数值模拟等手段开展了大量研究。

振动台模型试验和离心机模型试验是目前关于 液化场地桩-土相互作用研究中最常见的试验方法。 CUBRINOVSKI等^[3]采用大型层状剪切箱,基于液 化侧向扩展大型振动台试验,研究了侧向扩展条件 下桩基的力学特性及液化土层极限侧向位移响应。 EBEIDO等^[4]报道了单桩和群桩基础在液化侧向扩 展作用下的动力反应,通过水位线高度的变化来研 究上覆非液化土层在液化侧向扩展场地中对桩基础 动力反应的影响。WANG等^[5]基于振动台试验对 比分析了水平场地中完全上覆非液化土层、部分上 覆非液化土层、无上覆黏土层中群桩基础-桥墩-上 部结构体系的动力响应,讨论了冲刷对桩基础破坏 的影响。王志华等^[6]考虑附加质量块、底部嵌固条 件以及长径比等因素,开展了水平和倾斜液化地基 单桩振动台模型试验,研究了液化土体侧向扩展效 应对单桩动力反应的影响。TANG等^[7]针对液化侧 扩流场地桩-土相互作用开展了振动台模型试验研 究,通过试验得到了作用在桩基上的液化侧向土压 力大小。汪明武等^[8]通过离心机试验研究了倾斜液 化场地群桩基础的地震响应特征,分析了强震条件 下群桩基础的变形特性和液化场地侧向流动性能, 研究了桩基的破坏机理。

相比物理模型试验周期长、费用高、过程中条件 难以控制等困难,数值模拟方法能够在较短时间内 对液化场地进行水-土耦合分析,模拟饱和土体的剪 缩、剪胀等液化特性,更方便获取土和结构的动力响 应^[1]。ELGAMAL等^[9]基于OpenSees平台建立了多 屈服面弹塑性本构模型,并基于试验对本构模型参 数进行了标定,该本构模型能够较好描述饱和砂土 的液化特性。CHANG等^[10]借助OpenSees有限元平 台,采用与有效应力和总应力有关的塑性本构模型 模拟饱和砂土和黏土,考虑饱和砂土的液化特性,以 弹簧模拟桩-土接触非线性,建立液化侧向扩展场地

收稿日期:2022-11-18;**修订日期:**2023-02-24 **基金项目:**国家自然科学基金资助项目(52078016)。

土-群桩基础-上部结构二维非线性有限元模型,将计 算结果和试验结果进行对比,验证了模型的可靠性。 王晓伟等^[11]基于OpenSees有限元模型,建立了典型 河谷场地三跨简支梁模型,分析了各部件在液化侧向 扩展场地中的地震动力响应。林大富等[12]研究上覆 土层厚度及土体塑性指数对地震作用下的可液化场 地响应的影响。张效禹等[13]通过建立液化场地桩-土 动力相互作用三维有限元数值模型,研究了砂土的渗 透系数、内摩擦角和相对密度、上覆黏土层厚度及桩 径对p-y曲线的影响效应。崔杰等^[14]建立液化微倾场 地群桩-土动力相互作用有限元模型,系统研究了场地 倾斜角度、桩径、地震作用幅值和基桩位置对饱和砂 土动力p-y曲线特性的影响。孙艳国等^[15]基于有限元 软件 ABAQUS, 建立不同厚度的上覆软黏土层场地 中桩-筒复合基础数值分析模型,考虑不同荷载作用下 上覆软黏土层厚度对桩-筒复合基础的影响,研究认为 海上风电桩-筒复合基础的设计应充分考虑上覆软黏 土层对桩-筒复合基础承载特性的影响。

综上,目前针对液化场地中桩-土相互作用问题 的研究中,大多关注桩基破坏机理及考虑多种因素 对桩基动力响应的影响,而针对桩基动力响应的影 响因素分析也主要集中在液化土、桩、结构尺寸等方 面,对上覆非液化土层的关注相对较少。由于实际 场地中大多存在上覆土层,且实际工程中也均有为 防止地基土液化而进行人工回填的上覆土层,而倾 斜液化场地的液化土体会同时带动上覆土层发生侧 向扩展从而加大对结构的破坏,所以有必要针对上 覆土层对倾斜液化场地-桩基-结构动力响应的影响 进行研究。

本文结合前期完成的振动台试验,基于 Open-Sees 开源有限元计算平台建立了倾斜液化场地-群桩-结构相互作用二维整体化数值模型。通过与振动台模型试验结果的对比,验证了数值模拟方法的 合理性。在此基础上,针对实际建立典型倾斜液化 场地-群桩-结构体系相互作用数值模型,讨论了上 覆土层对体系地震反应的影响。

1 振动台试验概况

开展的液化侧向扩展场地-群桩基础-上部结构 体系的大型振动台试验在中国建筑科学研究院抗震 实验室完成。试验采用净尺寸为 3.2 m×2.4 m× 2.2 m(长×宽×高)的层状剪切模型箱,在模型箱底 部采用倾斜角度为 2°的钢筋混凝土底座模拟场地倾 斜的条件,振动台试验物理模型如图 1 所示^[16]。振 动台试验中对土体的孔压、加速度、位移以及桩身曲 率等进行测量,传感器整体布置如图2所示。

振动台模型试验中土层厚度为2m,自上而下为0.3m上覆硬土层,1.7m饱和砂土层,水位线与饱和砂土层上游边界保持一致。试验中采用2×2 布置的高承台钢筋混凝土群桩,桩基直径为0.1m, 高度为1.9m,桩中心间距为0.4m,桩基配备6根 6mm的纵筋,保护层厚度为1cm;桥墩直径为 0.2m,高度为1m,配备10根10mm的纵筋,保护层 厚度为2cm;上部结构配重质量为1.6t的铅块;承台 被设计为0.7m×0.7m×0.3m的钢筋混凝土试件。 桩头与承台、墩柱与承台均为刚性连接,桩端固定在 模型箱底部以此来模拟实际场地中的坚硬土层。

试验中选用 Tabas 地震记录为主要输入地震动,加速度峰值为0.3g,其时程曲线如图3所示。

2 数值建模

根据前期完成的振动台试验,本文基于 Open-

Sees 开源有限元计算平台建立了倾斜液化场地群 桩-土体-结构相互作用二维整体化数值模型,如图4 所示,具体建模过程如下。

Fig. 4 Finite element model of shaking table

2.1 土体的模拟

在本文的数值模拟中,地基土中的饱和砂土层 和上覆硬土层均采用二维四边形平面应变单元 quadUP^[17]模拟,quadUP单元是基于Biot土-水耦合 作用理论开发的土体单元,单元包含土体水平位移、 竖向位移以及孔隙水压力三个自由度,在土体液化 分析中可以较好地模拟饱和砂土与水的动力耦合作 用机制。

对于饱和砂土,采用对围压变化较为敏感的多 屈服面塑性本构模型,在OpenSees计算平台中选取 对应的PressureDependMutiYield02本构模型^[18],可 模拟砂土在循环荷载作用下出现的剪胀流动等现象 且考虑了液化引起的砂土永久剪应变循环累积效 应;对于黏土,选用对围压变化不敏感的多屈服面本 构模型,在OpenSees中选取对应的PressureIndependMutiYield本构模型^[19],可以更好地模拟黏土的 剪切弹塑性特征;模型的参数主要是根据振动台试 验中试验条件^[16]并结合OpenSees官网推荐^[19]进行 取值。饱和砂土和黏土的具体的材料参数取值如 表1所示。

2.2 桩基及上部结构的模拟

本文数值模拟中考虑桩基和墩柱的非线性特性,采用Dispbeamcloumn^[19]单元对桩基和墩柱单元进行模拟,对二者的纤维截面均采用Section fiber^[19]截面进行模拟;桩基和上部结构中的混凝土和钢筋的材料分别选用OpenSees中推荐的Concrete01材料和Steel02材料。承台的模拟采用OpenSees中

	表1	模型材料参数
Tab. 1	Mod	el material parameters

参数	砂土层	黏土层
密度 $\rho/(g \cdot cm^{-3})$	1.7	1.7
参考剪切模量G _r /kPa	60000	150000
参考体积模量B _r /kPa	160000	750000
摩擦角 ∉/(°)	31	0
八面体峰值应γ _{max}	0.1	0.1
参考围压 <i>p</i> _r /kPa	101	101
压力系数 n _p	0.5	0.5
相位角 $\phi_{\rm PT}/(°)$	31	—
剪缩参数 c1	0.093	—
剪缩参数 c ₃	0.18	—
剪胀参数 d1	0.0	
剪胀参数 d2	0.17	
黏聚力 c/kPa		75
屈服面数 n	20	20

Quad^[19]单元及弹性材料本构模型进行模拟。上部 结构简化为质量点施加在桥墩顶部;桩与承台、承台 与桥墩均采用刚性连接,以此模拟振动台模型试验 中承台对桩基和桥墩的嵌固作用。

2.3 桩-土相互作用的模拟

为了更好地模拟倾斜液化场地桩-土相互作用 中的接触非线性,数值建模中分别采用p-y,tz弹簧 考虑桩身与土体的侧向、竖向的相互作用。由于模 型试验中桩端固定在模型箱底部,故不考虑桩端与 土体的竖向相互作用。本文数值模拟所采用的 桩-土相互作用模型如图5所示。

2.3.1 饱和砂土层中的桩-土相互作用

在饱和砂土层中桩-土相互作用的模拟中,采用 考虑液化效应的*p-y*,*t-z*弹簧来考虑桩身与饱和砂 土的侧向、竖向相互作用,相应的选取OpenSees中 的PyLiq1,TzLiq1本构模型作为桩土相互作用接触 的本构模型。

其中,在上述PyLiq1,TzLiq1本构模型中,考虑 饱和砂土液化的极限强度*p*ut, in, *t*ut, in 可表示为:

$$p_{\text{ult, liq}} = p_{\text{ult}}(1 - r_{\text{u}}) + p_{\text{ress}}r_{\text{u}}$$
(1)
$$t_{\text{ult, liq}} = t_{\text{ult}}(1 - r_{\text{u}})$$
(2)

式中 p_{ut}, t_{ut} 为土体未液化时侧向、竖向的极限强度; p_{ress} 为土体液化后的极限强度,采用 $p_{ress}=p_{ut}, m_p$ 来计算,其中系数 m_p 可根据BRANDENBERG等^[20]推荐得到; r_n 为土体超孔隙水压力比。

其中,饱和砂土 p-y 弹簧模型中的土体侧向的极限强度 p_{ut} 可根据 API 规范^[21]来确定,如下式 所示:

$$p_{\rm ult} = \min \left[(C_1 z + C_2 D) \gamma z, C_3 D \gamma z \right] \qquad (3)$$

最终的可液化砂土的桩周土抗力计算公式,即 可液化砂土的*p*-y关系式由下式表示:

$$p = A p_{\text{ult, liq}} \tanh\left(\frac{n_{\text{h}}z}{A p_{\text{ult, liq}}} y\right)$$
(4)

式中 C₁, C₂, C₃为随土体内摩擦角变化的系数; D 为桩径; γ为土体有效重度; A 为荷载系数, 若为循 环荷载,则A取0.9; z 为泥面以下某点桩的深度; y 表示土体侧向位移; n_h为地基反力模量系数, 本文基 于 BOULANGER 等^[22]的研究考虑土体上覆有效应 力对地基反力模量的影响, 采用相关参数对不同深 度处 n_h进行修正。

饱和砂土 t-z 弹簧中的极限强度 t_{ut} 可根据 API 规范^[21]由下式计算得到:

$$t_{\rm ult} = K_0 \sigma'_{\rm v} P \tan \delta \tag{5}$$

可液化砂土的tz弹簧关系式由下式[21]表示:

$$t = t_{\rm ult, \, liq} \left(2 \sqrt{\frac{z}{z_{\rm c}}} - \frac{z}{z_{\rm c}} \right) \tag{6}$$

式中 K₀为土压力系数,一般取0.4;σ₀'为土体竖向 有效应力;δ为桩-土之间内摩擦角,一般取土体内摩 擦角的0.8倍;P为桩的周长;z₀为桩-土竖向相互作 用力达到极限时对应的竖向位移临界值。

2.3.2 黏土层中的桩-土相互作用

黏土层中的桩-土相互作用采用不考虑土体液 化的 PySimple1, TzSimple1 弹簧本构模型来模拟桩 身与土体的侧向、竖向相互作用。

其中,黏土层中的*p-y*弹簧的极限强度*p*_{ut}可根据API规范^[21]得到,黏土的*p-y*曲线关系式可由下式来表示:

$$p_{\text{ult,c}} = \min\left[\left(3 + \frac{\gamma}{c_{u}}z + \frac{J}{D}z\right)c_{u}D, 9c_{u}D\right] \quad (7)$$

$$p = 0.5 p_{\text{ult,c}} \left(\frac{y}{2.5 D \varepsilon_{50}} \right) \tag{8}$$

式中 c_u为黏土的不排水剪切强度;J为土体黏稠系

数,一般取0.25~0.5; *ε*₅₀为土体极限应力的50%对 应的应变,对于软黏土、中黏土和硬黏土分别取为 0.02,0.01和0.005。

黏土层的*tz*弹簧关系式与可液化砂土的相一致(见式(6)),但计算时需将公式中的*t*_{ult,iq}改为*t*_{ult,c}, *t*_{ult,c}可由下式^[21]计算得到:

$$t_{\rm ult,\,c} = \alpha_{\rm t} B c_{\rm u} \tag{9}$$

式中 α_t为桩侧摩阻力无纲量系数,通常取为0.1;*B* 为桩截面面积。

2.4 剪切局部化

在振动台模型试验中,由于上覆黏土层的渗透 系数比较低,当中间饱和砂土层发生液化时,砂土层 顶面土体中的孔隙水来不及排出,从而在砂土层顶 层土体与上覆黏土层之间形成一层结合水膜,使该 处土体的抗剪强度降低,导致黏土层与饱和砂土层 交界处在地震激励下产生振荡和位移不连续,即所 谓的液化松散砂层与非液化黏土层间的剪切局 部化。

本文为了模拟这种剪切局部化的现象,基于 WANG等^[23]提出的运用OpenSees中的土壤材料库 的简化建模技术,在上覆黏土层与饱和砂土层交界 处设置厚度为 h_w 和相应的低参考剪切模量 $G_{r,sof}$ 软 层间单元,该层间土体单元的其他材料参数与饱和 砂土单元相同,但其中软层间单元的低参考剪切模 量 $G_{r,sof}$ 取决于层厚 h_w ,二者的关系如下式所示:

$$G_{\rm r,\,soft} = 40 {\rm e}^{1.5h_{\rm w}}$$
 (10)

式中 h_w 表示由于黏土层内部或底部水膜的形成而 引起的剪切局部化范围,根据已有的试验研究总结 发现, h_w 一般在0.1~0.9 m^[23];本文的数值模拟中选 取 h_w 为0.1 m。值得注意的是,该方法只适用于可 液化土层上覆有非液化土层,从而导致有侧向扩展 发生的缓坡场地。对于坡度较大的土体场地,在使 用该方程时会引起较大的误差。

2.5 数值模拟步骤及边界

本文的数值模型中,采用等效自由度约束的方 法将模型两侧同一高度土体的水平、竖直方向位移 自由度绑定来建立剪切边界条件^[13,24],这样模型两 侧同一高度处的土体,其水平竖直两个方向位移分 别一致,实现了两侧土体协同变形,以此来模拟振动 台试验中土体的剪切变形。同时将模型底部土体的 位移自由度进行约束来模拟下部坚硬土层,土体模 型的底部和侧边界均设置成不排水边界。在数值模 拟过程中采用基于位移的收敛准则。为模拟土体的 动力非线性和耗能能力,参考相关研究成果^[24]在模 型中设置瑞利阻尼,阻尼比取为0.03。 在对倾斜液化场地-群桩-结构体系进行加载 时,首先将土体设置为弹性状态,将土体渗透系数设 置为1m/s,然后进行自重应力分析得到初始应力 场;接着加入结构和桩-土连接弹簧,并将弹簧设置 为弹性状态进行自重应力分析,从而得到加结构体 系后的初始应力场;最后将土体的渗透系数更改为 实际值,将土体、结构材料以及桩-土连接弹簧设置 为塑性状态,采用一致激励的方式进行动力分析。

3 振动台数值模型验证

为了验证本文所建立的数值模型的有效性,将 本文所建立的数值模型计算得到的土体的超孔压 比、加速度、位移以及桩身曲率与前期开展的振动台 模型试验结果进行对比。

3.1 场地孔隙水压力响应

图6给出了本文数值模拟和模型试验中不同土 体深度处的孔压比时程结果的对比情况,可以看出 本文对孔隙水压力的模拟结果与模型试验结果趋势 基本一致。在孔压发展的第一阶段(0~5s),由于 输入的地震动加速度幅值较小,超孔隙水压力均未 开始发展;在第二阶段(5~12 s),随着基底输入的 地震动加速度的幅值逐渐增大并达到峰值,土体的 超孔隙水压力快速累积直至部分土体达到液化;在 第三阶段(12~40 s),输入地震动加速度的幅值逐 渐减弱,在此阶段土体中的孔隙水压力逐渐开始消 散。图6中的第二阶段(5~12 s),相比模型试验的 结果,数值模拟结果中的孔隙水压力增长速度较快, 可能是因为模型试验中存在模型箱的耗能以及所选 用的 quadUP 土体单元没有考虑土体自身加速度的 影响^[25]。在第三阶段(12~40 s)土体孔压消散程度 有一定的差异,尤其是饱和砂土顶层,分析其原因可 能是因为模型试验中土体的渗透系数分布不均匀以

Fig. 6 Comparison of time-history curves of pore pressure ratio

及测点布置精准程度等因素导致^[24]。

从总体上看,本文数值模拟得到的孔隙水压力 发展趋势与模型试验结果基本一致,因此可认为本 文所建立的数值模型较好地再现了倾斜液化场 地-桩基-结构中饱和砂土层的孔隙水压力动力 反应。

3.2 土体水平加速度响应

图7给出了本文数值模拟的结果与模型试验中 不同深度处土体的加速度时程曲线和加速度峰值曲 线的对比情况,由图7(a)可以看出不同深度处土体 加速度的数值模拟结果和模型试验结果吻合较好。 同时由图7(b)可以看出,在饱和砂土层中随着土体 埋深的增大,土体加速度峰值逐渐减小,说明土体液 化后具有通低频滤高频的效果,这与其他文献结论 基本一致^[8,24]。图7(b)中加速度的峰值在黏土层出 现突变,这可能是由于饱和砂土层地震液化后土体 刚度降低,从而使得与黏土层的刚度差异增大导致 的。图7(b)中土体水平加速度峰值的模拟结果和 试验结果在砂土层的部分测点有一定差异,分析其

Fig. 7 Comparison of time-history and peak values of horizontal acceleration of soil

原因主要是由于本文的数值模拟中没有考虑模型箱 耗能的影响。

3.3 土体水平残余位移响应

图8给出了场地土的水平残余位移沿深度变化 的数值模拟结果与模型试验结果的对比情况,可以 看出两个结果沿着深度的变化趋势基本一致。随着 埋深的减小,饱和砂土层土体的水平残余位移逐渐 增大,到达黏土层后位移又出现减小的趋势,最大的 土体水平残余位移出现在饱和砂土层与黏土层交界 面处,达到了31.9 mm,并且该处出现了位移突变现 象,这也说明了考虑不同土体交界面的剪切局部化 的数值模型的合理性。相比交界面处的主体位移, 黏土层的位移相对较小,这是因为上覆黏土层不透 水,因此在黏土与饱和砂土层界面处积聚了大量的 孔隙水,降低了交界面处的摩擦力,使得砂土层无法 更好地带动上覆硬土层侧向扩展、发生较大位移^[24]。 综上,考虑剪切局部化的数值模型能够较好地模拟 倾斜液化场地不同土层的水平位移发展趋势。

Fig. 8 Comparison of horizontal residual displacement of soil along depth direction

3.4 桩基和结构的动力响应

图9给出了桩基最大曲率的数值模拟结果和模型试验结果的对比情况,可以看出两个结果沿着土体深度的变化趋势基本一致。桩基曲率在桩顶处的值最大,随后随着埋深的增加逐渐减小,在埋深为0.9 m处出现了转折并达到最小值;随着埋深的进一步增加而逐渐增大,在桩基底部达到了一个较大值。由于模型试验中桩基底部固定,而桩顶受上部结构惯性力影响,导致桩身曲率在桩顶和桩底处较大,本文的数值模拟也较好地模拟了这个变化趋势。

图 10 给出了上部结构的加速度时程曲线数值 模拟结果和模型试验结果的对比情况,同样可以看

Fig. 9 Comparison of curvature envelope diagram of pile foundation

图 10 上部结构加速度时程对比

Fig. 10 Comparison of time-history acceleration of superstructure

出二者发展趋势基本一致。

通过上述对多个响应结果的对比验证可知,本 文所建立的倾斜液化场地-群桩-结构相互作用二维 整体化数值模型能够较好地模拟倾斜液化场地-桩 基-结构振动台模型试验中土体和结构的动力响应 规律,因此所采用的数值模拟方法是合理和有效的。

4 典型倾斜液化场地-群桩-结构数值 模拟

由于1g振动台试验尺寸规模较小以及模型箱 效应的局限性,不能合理地反映实际场地土体的应 力水平。因此本文基于已验证的方法建立典型倾斜 液化场地-群桩-结构数值模型,以此来讨论上覆土 层对实际倾斜液化场地-群桩-结构体系动力反应的 影响。

选取某高铁渡河桥梁工程^[26],该桥为典型的钢筋混凝土连续梁桥。数值建模过程中将模型中场地 土简化成两层,分别为黏土和砂土,其中饱和砂土相 对密实度为55%;模型中土层总高度为20m,长为 100m,地下水位位于饱和砂土层顶面。桩设计为 2×2布置的高承台群桩,其中桩径为1.2m,桩长为 21m,桩间距为4m,桥墩高度为8m,桥墩直径为 2m,承台采用混凝土材料,尺寸为7m×7m×3m。 基于上述数值建模的方法针对该实际场地在 OpenSees中建立二维典型倾斜液化场地-群桩-结构数值模型。由于实际场地尺寸较大,简单的剪切边界条件已经不适用,因此在模型两侧各建立长为50m,厚度为10000m的自由场土体单元,并使用OpenSees中的equalDOF命令将自由场土体同一高度处的水平和竖向位移自由度进行约束,以此模拟实际场地的自由场边界条件。模型中其他的建模方法均与前述振动台试验建模方法一致。

4.1 不同上覆土层厚度时饱和砂土孔压反应

本节以上述实际场地中距离上坡桩基28 m处的土体为研究对象,论文中后续分析均选取该位置来进行场地的土体响应的计算与讨论。上覆土层为不排水抗剪强度为75 kPa的黏土层。图11(a)给出了该位置处不同上覆土层厚度下饱和砂土沿深度方向的孔压比分布图。由图可知,在饱和砂土层中,土体的孔压比随着饱和砂土土层深度的增加而减小,由此说明浅层土体相比深层土体更易液化。同时可以看出,在土体较深的位置处,同一深度处土体的孔压比随着上覆土层厚度的增大均有所减小。当上覆土层厚度增加到5 m时,饱和砂土土体各土层孔压比均未达到1,也就是说饱和砂土层各个位置处的

Fig. 11 Pore pressure ratio of saturated sand

土体均未完全液化。图11(b)给出了不同上覆土层 厚度下饱和砂土层顶面的土体的孔压比时程图,由 图可以看出随着上覆土层厚度的增加,饱和砂土层 达到液化的时刻也相应延迟,且土体的孔压比峰值 也相应减小。以上充分说明了上覆土层厚度的增加 有利于降低土体的液化程度。

4.2 不同上覆土层厚度时土体加速度反应

图 12 给出了不同上覆土层厚度时各个土层的 土体加速度峰值分布图。可以看出,不同情况下地 震波加速度在土层中的传播趋势基本一致。沿着土 体深度由下往上看,土体的加速度峰值在饱和砂土 层中随着土体深度的减小出现明显衰减,在黏土层 加速度出现增长,这与上述试验中观测到的规律一 致。随着上覆土层厚度的增加,浅层土体处的加速 度峰值出现明显的增大,尤其地表土体的加速度峰 值增大了约0.9倍,这一现象与4.1节所计算得到的 上覆土层厚度的增加使得土体的液化程度降低 有关。

4.3 不同上覆土层厚度时土体位移反应

图 13 给出了不同上覆土层厚度时土体沿深度 方向的水平残余位移分布图。可以看出,饱和砂土 层的土体水平残余位移在深度 15 m以下的部分增 长幅度很小,在15 m以上土体水平残余位移出现明 显增长;随着土体深度的减小,土体的水平残余位移 不断增加,在饱和砂土层顶面处达到最大,而在黏土 层的水平残余位移基本不变。随着上覆土层厚度的 增加,相同深度处土体的水平残余位移均有所减小, 上覆土层厚度从0增加到5 m时,土体的水平残余 位移峰值从 0.79 m减小至 0.18 m,下降幅度约 77%。因为上覆土层厚度的增加对场地土体的约束 作用更加明显,土体的侧向变形减小更加显著。

图13 沿深度方向土体水平残余位移

Fig. 13 Horizontal residual displacement of soil along depth direction

4.4 不同上覆土层厚度时桩基动力响应结果

图 14 给出了不同上覆土层厚度下桩基水平残 余位移沿深度方向的分布图。可知,桩基水平残余 位移在饱和砂土层埋深 15 m以下的部分增长幅度 很小,在 15 m以上开始出现明显增长,并随着埋深 的减小,桩基水平残余位移不断增加,这与土体的水 平残余位移增长趋势基本一致;桩基水平残余位移 到达黏土层时增长速度减慢,说明黏土层对桩基起 到了一定的固定作用从而限制了桩基位移的发展。 随着上覆土层厚度的增加,不同深度桩基的水平残 余位移均有所减小,相比无上覆土层,上覆土层厚度 增加至 5 m,桩基水平残余位移峰值下降约68%。

图 15 给出不同上覆土层厚度时桩基曲率沿土 层深度分布的包络图。由图 15 可知,不同计算工况 下桩基曲率在土层深度 12~13 m 的范围内达到最 大值,且由于惯性力的影响,桩基顶部的曲率也较 大。当上覆土层的厚度超过1 m 时,随着上覆土层

Fig. 15 Curvature envelope diagram of pile foundation

厚度的增加,桩身的最大曲率及桩顶曲率出现明显 的减小;当上覆土层厚度增加至5m,桩顶最大曲率 从0.01减小至0.002,下降约80%,桩身最大曲率从 0.011减小至0.004,下降约64%。分析其原因,是因 为上覆土层对桩基反应起到了约束作用,限制了桩 基的运动,这与文献[5,27]的结论基本一致。因此, 增加上覆土层厚度可以提高桩基的受力性能,可以 作为一种减轻液化场地桩基震害的有效手段应用到 实际工程中。

4.5 不同上覆土层厚度时桩-土-结构相互作用 分析

以上覆土层厚度为0和5m为例,图16给出了 埋深为13m处土体在两种不同上覆土层厚度时对 桩-土-结构相互作用影响的时程曲线图。

由图可知,针对无上覆土层来说,在地震作用前 期(0~12 s)内,土体的液化程度较低,土体的水平 残余位移增长缓慢,这时桩基曲率基本不变;在地震 作用12 s,饱和砂土的孔压比r_a达到0.8后,土体位 移出现明显增长,桩基曲率也随之增长,且桩基曲率

图 16 不同上覆土层厚度时桩-土-结构相互作用时程曲线

Fig. 16 Time-history curve of pile-soil-structure interaction with different overlying crust thickness

出现最大值的时刻与土体位移峰值时刻基本一致。 由此可知,桩基曲率的变化主要受到土体位移变化 的影响。相比无上覆土层的情况,有上覆土层存在 时,土体的液化程度降低,土体的位移减小从而使得 桩基曲率也减小。同时从桥墩曲率和上部结构加速 度时程曲线可以看出,桥墩的曲率峰值出现时刻与 上部结构加速度峰值出现时刻基本一致,桥墩曲率 主要受上部结构惯性力的影响。相比无上覆土层, 有上覆土层存在时,上覆土层使得上部结构的加速 度增加,同时桥墩的曲率也有所增加。

4.6 不同上覆土层性质下桩基动力响应

为了更加全面地分析上覆土层对倾斜液化场地 桩基地震响应的影响,针对不排水抗剪强度分别为 18,37,75 kPa的上覆黏土层进行计算,结果如图17 所示。图17(a)和(b)为上覆土层厚度为3m时不同 上覆土层性质下桩身水平残余位移分布图以及桩基 曲率包络图。由图17(a),(b)可知,随着上覆黏土 层强度的增加,同一深度处桩基的水平残余位移均 有所减小,桩基出现最大曲率的位置发生改变,桩顶

及桩身最大曲率均有所减小。图17(c)为不同上覆 土层厚度时考虑上覆土层性质影响下的桩身最大残 余水平位移、桩身最大曲率以及桩顶曲率的计算结 果。由图17(c)可知,相同上覆土层厚度下,上覆土 层的不排水抗剪强度越大,桩基位移、桩身曲率及桩 顶曲率越小,尤其当上覆土层厚度大于2m时,上覆 土层强度对桩基动力反应的影响更加明显。

5 结 论

本文基于振动台模型试验,建立了倾斜液化场 地桩-土-结构相互作用的整体有限元数值模型,验 证了数值模拟方法的合理性和有效性。在此基础 上,建立了针对实际场地的典型倾斜液化场地-群 桩-结构数值模型,讨论了不同上覆土层厚度及性质 对倾斜液化场地-桩基-上部结构体系地震动力反应 的影响。得到的主要结论如下:

(1)本文考虑桩土接触非线性以及土体剪切局 部化所建立的数值模型可以较好地模拟桩-土相互 作用以及黏土层与饱和砂土层间交界处的响应。

(2)上覆土层厚度的增加使得饱和砂土层中的 孔压比减小,浅层土体的加速度峰值增加,土体的水 平残余位移减小。增加上覆土层厚度可以降低土层 的液化程度和变形。

(3)随着上覆土层厚度增加,桩身位移以及桩基 曲率均有所减小。上覆土层的存在可以提高桩基的 受力性能。

(4)上覆土层的强度越大,桩基位移和桩身曲率 越小。随着上覆土层厚度增加,上覆土层强度对桩 基动力反应的影响更加明显。

参考文献:

[1] 许成顺,贾科敏,杜修力,等.液化侧向扩展场地-桩基础抗震研究综述[J].防灾减灾工程学报,2021,41
 (4):768-791.

XU Chengshun, JIA Kemin, DU Xiuli, et al. Review on seismic behavior of pile foundation subjected to liquefaction induced lateral spreading[J]. Journal of Disaster Prevention and Mitigation Engineering, 2021, 41(4): 768-791.

- [2] 王睿,张建民,张嘎.液化地基侧向流动引起的桩基础 破坏分析[J].岩土力学,2011,32(增刊1):501-506.
 WANG Rui, ZHANG Jianmin, ZHANG Ga. Analysis of failure of pile foundation due to lateral spreading in liquefied soils[J]. Rock and Soil Mechanics, 2011, 32 (Sup1): 501-506.
- [3] CUBRINOVSKI M, KOKUSHO T, ISHIHARA K.

Interpretation from large-scale shake table tests on piles undergoing lateral spreading in liquefied soils [J]. Soil Dynamics and Earthquake Engineering, 2006, 26 (2-4): 275-286.

- [4] EBEIDO A, ELGAMAL A, TOKIMATSU K, et al. Pile and pile-group response to liquefaction-induced lateral spreading in four large-scale shake-table experiments[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(10): 04019080.
- [5] WANG X W, JI B H, YE A J. Seismic behavior of pile-group-supported bridges in liquefiable soils with crusts subjected to potential scour: insights from shake-table tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(5): 04020030.
- [6] 王志华, 徐超, 周恩全, 等. 液化土体流滑推桩效应的振动 台模型试验[J]. 地震工程与工程振动, 2014, 34(2): 33-39.
 WANG Zhihua, XU Chao, ZHOU Enquan, et al. Shaking table test on effects of sand flow on pile in liquefied ground[J]. Earthquake Engineering and Engineering Dynamics, 2014, 34(2): 33-39.
- [7] TANG L, ZHANG X Y, LING X C, et al. Response of a pile group behind quay wall to liquefaction-induced lateral spreading: a shake-table investigation [J]. Earthquake Engineering and Engineering Vibration, 2014, 13 (4): 741-749.
- [8] 汪明武, TOBITA T, IAI S. 倾斜液化场地桩基地震 响应离心机试验研究[J]. 岩石力学与工程学报, 2009, 28(10): 2012-2017.

WANG Mingwu, TOBITA T, IAI S. Dynamic centrifuge tests of seismic responses of pile foundations in inclined liquefiable soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 2012-2017.

- [9] ELGAMAL A, YANG Z, PARRA E. Computational modeling of cyclic mobility and post-liquefaction site response[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(4): 259-271.
- [10] CHANG D, BOULANGER R W, BRANDENBERG S, et al. FEM analysis of dynamic soil-pile-structure interaction in liquefied and laterally spreading ground [J]. Earthquake Spectra, 2013, 29(3): 733-755.
- [11] 王晓伟,李闯,叶爱君,等.可液化河谷场地简支梁桥的 地震反应分析[J].中国公路学报,2016,29(4):85-95.
 WANG Xiaowei, LI Chuang, YE Aijun, et al. Seismic demand analysis of a simply supported girder bridge in liquefied or non-liquefied ground[J]. China Journal of Highway and Transport, 2016, 29(4):85-95.
- [12] 林大富,黄凤娟,付钰.上覆土层对可液化场地地震 响应的影响研究[J].路基工程,2019(5):18-22.
 LIN Dafu, HUANG Fengjuan, FU Yu. Study on influence of overburden soil layer on seismic response of liquefiable site[J]. Subgrade Engineering, 2019(5):18-22.

[13] 张效禹,唐亮,凌贤长,等.液化场地桥梁桩-土动力 相互作用p-y曲线特性研究[J].防灾减灾工程学报, 2014,34(5):619-625.
ZHANG Xiaoyu, TANG Liang, LING Xianchang, et al. Analysis on characteristics of dynamic p-y curves for

 al. Analysis on characteristics of dynamic p-y curves for soil-pile interaction in liquefiable ground [J]. Journal of Disaster Prevention and Mitigation Engineering, 2014, 34(5): 619-625.

 [14] 崔杰,张征,唐亮,等.液化微倾场地群桩-土动力相 互作用*p*-y曲线特性[J].地震工程与工程振动,2021, 41(5):154-164.
 CUI Jie, ZHANG Zheng, TANG Liang, et al. *p*-y

curve characteristics of pile group soil dynamic interaction in mildly inclined liquefiable ground [J]. Earthquake Engineering and Engineering Dynamics, 2021, 41(5): 154-164.

- [15] 孙艳国,许成顺,杜修力,等.上覆软黏土层对桩-筒 复合基础承载性能的影响[J].哈尔滨工业大学学报, 2023,55(2):108-116.
 SUN Yanguo, XU Chengshun, DU Xiuli, et al. Effect of overlying soft clay on bearing characteristics of pile-tucket composite foundation[J]. Journal of Harbin Institute of Technology, 2023, 55(2): 108-116.
- [16] 贾科敏,许成顺,杜修力,等.液化侧向扩展场地-群桩 基础-结构体系地震破坏反应大型振动台试验方案设 计[J].工程力学,2023,40(7):121-136.
 JIA Kemin, XU Chengshun, DU Xiuli, et al. Experimental design of shaking table tests for seismic failure response of pile-group-superstructure subjected to lique-faction-induced lateral spreading[J]. Engineering Mechanics, 2023, 40(7): 121-136.
- [17] YANG Z, LU J, ELGAMAL A. OpenSees soil models and solid-fluid fully coupled elements: user's manual[R]. Department of Structural Engineering, University of California, San Diego, 2008.
- [18] YANG Z, ELGAMAL A, PARRA E. Computational model for cyclic mobility and associated shear deformation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(12): 1119-1127.
- [19] MAZZONI S, MCKENNA F, SCOTT M H, et al. The open system for earthquake engineering simulation (OpenSees) user command-language manual [R]. University of California, Berkeley: Pacific Earthquake Engineering Research Center, 2006.
- [20] BRANDENBERG S J, BOULANGER R W, KUT-TER B L, et al. Behavior of pile foundations in laterally spreading ground during centrifuge tests [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(11): 1378-1391.
- [21] API. Recommended practice for planning, designing, and constructing fixed offshore platforms—working

stress design, API RP 2A-WSD[S]. Washington, D. C.: American Petroleum Institute, 2005.

- [22] BOULANGER R W, CURRAS C J, KUTTER B L, et al. Seismic soil-pile-structure interaction experiments and analyses [J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(9): 750-759.
- [23] WANG X W, LUO F Y, SU Z Y, et al. Efficient finite-element model for seismic response estimation of piles and soils in liquefied and laterally spreading ground considering shear localization[J]. International Journal of Geomechanics, 2017, 17(6): 06016039.
- [24] 苏卓林, 贾科敏, 许成顺, 等. 双向地震作用对可液化 倾斜场地-桩基-结构地震响应的影响研究[J]. 建筑结 构学报, 2023, 44(7): 15-26.

SU Zhuolin, JIA Kemin, XU Chengshun, et al. Influence of bidirectional seismic action on seismic response of pile foundation-structure in liquefiable inclined soil[J]. Journal of Building Structures , 2023, 44(7): 15-26.

- [25] 刘星.可液化地基中群桩基础震动响应基本规律研究
 [D].北京:清华大学,2018.
 LIU Xing. Research on seismic response of pile group in liquefiable ground[D]. Beijing: Tsinghua University, 2018.
- [26] 徐博闻.液化侧扩流场地桩基连续梁桥结构体系地震 响应分析[D].哈尔滨:哈尔滨工业大学,2019.
 XU Bowen. Seismic response analysis of pile-supported continuous bridge on liquefiable lateral spreading ground
 [D]. Harbin: Harbin Institute of Technology, 2019.
- [27] ZHENG G, ZHANG W B, ZHOU H Z. Effects of nonliquefiable crust on the seismic behavior of pile foundations in liquefiable soils [C]//Conference on Performance-based Design in Earthquake. Geotechnical Engineering. Cham: Springer, 2022: 1265-1276.

Effect of overlying crust on seismic response of inclined liquefiable site-pile foundation-structure system

ZHANG Xiao-ling^{1,2}, FANG Li-jing^{1,2}, XU Cheng-shun^{1,2}, JIA Ke-min^{1,2}

(1.College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China; 2.Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education, Beijing University of Technology, Beijing 100124, China)

Abstract: The seismic dynamic response of pile foundation in inclined liquefaction site is an important issue in the field of geotechnical seismic engineering. Based on the shaking table model test carried out by our research group and the OpenSees software platform, a two-dimensional integrated numerical model of inclined liquefied soil-pile group-structure interaction is established in this paper. The nonlinearity of pile-soil contact and the shear localization of soil layer are considered in the model. The rationality and effectiveness of the numerical simulation method are verified by comparing with the shaking table test results. On this basis, a typical inclined liquefied site-pile group-structure interaction finite element model is established to discuss the influence of different overlying crust on the seismic response of site and structure system. The calculation results show that with the increase of the thickness of overlying crust, the pore pressure ratio in the saturated sand decreases, the horizontal residual displacement of soil decreases, and the displacement of pile body and the pile curvature decrease. The effect of the strength of overlying crust on the dynamic response of pile foundation.

Key words: seismic response; pile-soil interaction; overlying crust; inclined liquefiable site; numerical simulation

作者简介:张小玲(1980一),女,博士,教授。电话:(010)69391980; E-mail: zhangxiaoling31@163.com。