优化AR模型的滚动轴承故障 IAS 信号诊断方法

朱云贵,郭 瑜,陈 鑫,杨新敏,邹 翔

(昆明理工大学机电工程学院,云南昆明 650500)

摘要:针对振动传感器不易安装场合的滚动轴承故障诊断困难的问题,提出了一种基于优化AR模型的滚动轴承故 障瞬时角速度(instantaneous angular speed, IAS)信号诊断方法。采用向前差分法估计获取IAS信号;基于有偏估 计自相关分析优化AR模型,依据自相关峭度最大原则确定最优阶次p并进行AR预测剔除IAS信号中的周期分 量,获得包含丰富轴承故障信息的残余分量;对残余信号预白化处理使得各频带重要程度同等并包络提取故障特 征。通过仿真信号和实测外圈数据验证了所提方法的有效性;试验对比分析结果显示,与现有基于振动信号的快速 谱峭度结合阶次分析的方法相比,所提方法的计算效率有显著提高。

关键词:故障诊断;滚动轴承;AR模型;有偏估计;IAS信号

中图分类号: TH165⁺.3; TH133.33 文献标志码: A 文章编号: 1004-4523(2024)12-2141-07 DOI:10.16385/j.cnki.issn.1004-4523.2024.12.016

引 言

目前,针对滚动轴承故障的诊断方法较多,但大 多数基于振动信号,例如,快速谱峭度(Fast Kurtogram, FK)分析方法^[1]基于振动信号对滚动轴承进 行故障诊断时,根据1/3-二叉树滤波器组方式确定 带通滤波器中心频率及带宽,获得合适的共振频带, 进行包络解调时的频带细分易增加时间成本,而在 实际工程应用中,企业更多关注的是如何高效检测 出滚动轴承是否存在故障。在一些工况下可能难以 有效安装振动传感器^[2],例如,需要做较大范围运动 的工业机器人关节臂、旋转矢量(rotate vector, RV) 减速器等场合的滚动轴承故障诊断较为困难,亟待 研究新的诊断途径。

相较于振动传感器,编码器通常内置于伺服电 机中,无需额外安装和定期校准。研究表明,由编码 器采集获得的信号计算而来的瞬时角速度(instantaneous angular speed, IAS)信号与转子动力学直接 相关,具有传递路径短、干扰少等优点^[3],并且在编 码器线数较少情况下也能够较好地反映滚动轴承旋 转时的故障信息。近年来,基于IAS信号特征分析 的滚动轴承故障检测技术受到了国内外许多专家学 者的关注。例如,MOUSTAFA等^[4]研究了低速工 况下基于IAS信号的轴承故障尺寸的估计。但其只 简单验证了IAS信号对滚动轴承故障检测的有效 性,并未考虑转频、齿轮等周期性分量对最终结果辨 识难易程度的影响。

自回归(autoregressive, AR)模型^[5]是一种用于 提取复杂信号中平稳分量的高效线性预测模型,其 关键在于确定AR模型的最优预测阶次p,更大程度 提取出复杂信号中周期性成分,同时使得残余信号 中的故障信息更显著;而最优阶次p通常以赤池信 息准则(Akaike information criterion, AIC)^[6]、最终 预报误差准则(final prediction error criterion, FPE) [7]等判别准则进行选取,但这些准则通常需要大量 数据点来提高其准确性,且单独使用一种准则进行 判定可信度不高[5]。此外,因峭度对故障冲击敏感, 可被用于AR模型预测阶次判别指标。例如,文献 [5]中以峭度最大原则确定AR模型最优阶次p来剥 离角域重采样信号中齿轮干扰分量。但峭度指标易 受随机噪声的干扰,导致AR模型预测时难以选取 最优阶次p,从而影响最终故障检测结果的判断。 自相关函数(autocorrelation function, ACF)^[8]具有良 好的降噪功能,已被广泛应用于滚动轴承故障诊断 中,但多为基于无偏估计的自相关分析方法,当噪声 较强时容易失效,而基于有偏估计的自相关分析具 有更强的抗干扰能力。另一方面,与滚动轴承故障 对应的振动冲击不同,滚动体与滚道间缺陷处接触 时刚度发生变化产生的微小IAS波动分量通常难以 激起高频共振,对IAS信号使用FK难以找到合适 的解调频带完成滚动轴承的故障诊断。但研究表

基金项目:国家自然科学基金资助项目(52165067);云南省科技计划重大专项(202002AC080001)。

收稿日期: 2022-10-28; 修订日期: 2022-12-24

明,预白化处理后的信号可使各个频带的重要程度 相同,无需确定共振频带,可直接进行包络谱 分析^[9]。

为了实现振动传感器不易安装场合的滚动轴承 故障诊断,本文结合IAS信号优势,提出了一种基于 优化AR模型的滚动轴承故障IAS信号诊断方法。 通过仿真信号和实测数据验证了所提方法的有 效性。

1 理论方法简介

1.1 旋转编码器信号的 IAS 计算

设编码盘外环上刻有M个光栅,通过高速计数器 拾取编码器光栅的上升沿或下降沿对应的角度差 $\Delta \theta_i$, 同时使用T法^[10]对相邻编码脉冲之间的时间间隔 Δt_i 进行采集,利用向前差分法^[3]估计IAS,可表示为:

$$IAS = \frac{\Delta\theta_i}{t_i - t_{i-1}} = \frac{\Delta\theta}{\Delta t_i} \tag{1}$$

式中 IAS表示 t_i 时刻对应的 IAS 值; Δt_i 为两个连续编码脉冲之间的时间间隔; $\Delta \theta_i$ 为编码盘相邻光栅间隔角度。忽略编码器制造误差, $\Delta \theta_i = \Delta \theta = 2\pi/M, M$ 为旋转编码器光栅盘刻度线数。

1.2 自相关函数与估计方法的选取

对于离散瞬时角速度信号IAS(n),其自相关计 算公式为:

$$R_{x}(\tau) = \sum_{n=-\infty}^{\infty} IAS(n) IAS(n+\tau)$$
 (2)

式中 τ 为时移; $R_x(\tau)$ 表示经时间 τ 延拓后的信号 与原始信号的相似程度, $R_x(\tau)$ 值越大,相似程度 越高。

有偏估计和无偏估计是互相关函数的主要估计 方法。设两个离散信号序列为*x_a(n)*和*x_b(n)*,则两个 信号的互相关有偏估计和无偏估计可分别表示为:

$$\hat{R}_{ab}(m) = \frac{1}{N} \sum_{n=0}^{N-1-|m|} x_a(n) x_b(n+m) \quad (3)$$

$$\hat{R}_{ab}(m) = \frac{1}{N - |m|} \sum_{n=0}^{N - |m|} x_a(n) x_b(n+m)$$
(4)

式中 $m = -(N-1), -(N-2), \cdots, 0, \cdots, N-2,$ N-1。

自相关分析被广泛应用于滚动轴承故障诊断, 但多数为基于无偏估计的自相关分析,然而传感器 采集的信号易受强噪声的干扰,相比于无偏估计算 法,有偏估计自相关分析的抗干扰能力更强^[8]。因 此,研究中采用有偏自相关分析对AR模型进行优 化处理。

1.3 有偏估计自相关优化 AR 模型

AR模型^[5]在滚动轴承故障检测中常用于去除 周期性成分,进而增强随机信号中滚动轴承故障信 息。设长度为*N*的零均值平稳信号序列*IAS(n)*,则 基于AR模型的预白化过程可表示^[11]为:

$$e(n) = IAS(n) - \sum_{i=1}^{p} a(i) IAS(n-i)$$
 (5)

式中 e(n)表示AR模型预白化后的残差信号;a(i) 为自回归系数;p为AR模型的阶数。在对信号进行 线性预测时,AR模型阶次p的取值会直接影响最终 的预测效果^[12]。因此,如何选取合适的p值是算法 有效实现的关键。本文基于有偏估计自相关分析对 AR模型进行优化,并以残差信号自相关峭度值最 大化为评价指标确定AR模型的最优阶次p。其流 程图如图1所示。

具体步骤如下:

步骤1:确定AR模型的合理阶次范围。参照文献[13]设置AR模型阶次p的范围为1~100。

步骤2:有偏估计自相关优化AR模型。利用有 偏估计的自相关分析方法对IAS信号进行处理,然 后对信号进行预测,计算各阶预测所得预白化残差 信号的自相关峭度值K_e,其计算公式如下:

$$K_{c} = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{R_{xx}(x_{i} - \bar{x})}{\sigma} \right)^{4}$$
(6)

式中 x_i 表示离散 IAS 信号; \bar{x} 表示信号均值; σ 为信号的标准差; R_x 表示有偏估计自相关系数。

步骤3:最优阶次的确定。计算对比不同阶次下 残余信号的自相关峭度值,找出自相关峭度值达到最 大时对应的阶次p,即为AR模型预测的最优阶次p。

2 滚动轴承故障诊断流程

本文提出一种基于优化AR模型的滚动轴承故 障IAS信号诊断方法,诊断流程如图2所示。

Fig. 2 Rolling bearings fault diagnosis process

详细步骤如下:

步骤1:根据采集的原始编码器信号使用式(1) 计算获取IAS信号,并进行去均值处理。

步骤 2:利用 1.3 节中优化后的 AR 模型对 IAS 信号进行线性预测, 剔除周期性分量干扰, 得到包含 丰富轴承故障信息的残差信号, 并进行预白化处理。

步骤3:为了更好地揭示故障特征,包络提取步骤2中预测所得预白化信号的包络阶次谱。

步骤4:分析步骤3所得的包络阶次谱,并通过 与滚动轴承理论故障特征阶次进行对比,完成滚动 轴承的故障诊断。

3 仿真分析

3.1 仿真信号模型

当滚动轴承外圈出现局部故障时,转轴瞬时角 速度将会产生一定规律性波动,但实际工况下信号 组成较复杂,如电机影响、转轴速度变化以及滚动轴 承故障引起的速度波动等。

因此,为了验证本文所提方法的有效性,采用轴 承外圈故障仿真信号进行分析验证,其仿真模型^[14] 如下:

$$\begin{cases} IAS(\theta_i) = \omega + \sum_i s(\theta_i - iT_0) + \omega_n \\ \omega = \bar{\omega} + \sum_i A_i \sin(2\pi O_r \theta_i) \\ s(\theta_i) = A_1 e^{-a\theta} \sin(2\pi O_{out} \theta_i) \end{cases}$$
(7)

式中 ω 表示转轴转速及其瞬时波动成分,可由一 个恒定速度值和多个正弦信号叠加合成; $\bar{\omega}$ 表示转 轴的恒定转速; $s(\theta_i)$ 表示周期为 T_o 的轴承故障引起 的周期性冲击,以此模拟滚动轴承外圈故障引起的 速度波动; ω_n 为噪声成分。

研究中,模拟编码器线数为5000(即旋转一圈

获取 5000 个数据点),滚动轴承仿真故障信号参数为:故障特征阶次 O_{out} =5.23×,幅值 A_i =10, A_1 =0.1,转轴转频阶次设置为 O_i =1×,阻尼系数 a=500,信噪比设置为-10 dB。

3.2 仿真信号分析

图 3 为仿真的编码器信号。从图中可看出,编码器信号无法直观获取滚动轴承相关故障信息,因此需要将其转换为 IAS 信号进行分析。图 4(a)给出的是 IAS 仿真信号旋转 10 圈的波形,图 4(b)为仿真 IAS 信号对应的包络阶次谱。

从图4包络阶次谱中可看出,转频阶次及其倍频占主导,与滚动轴承外圈故障相关的特征谱线难以辨识。利用未优化的AR模型对仿真信号进行处理,峭度最大原则选取优化阶次曲线如图5所示,峭度值最大时阶次*p*=3,即最优阶次为3,此时AR模型处理结果如图6所示。

观察图6可知,转频阶次及其谐波已被消除,但 噪声以及随机噪声仍然较强,滚动轴承故障特征阶 次谱线湮没其中,难以被有效识别。

为了有效提取故障特征,采用所提方法对仿真

图5 未优化AR模型阶次曲线

未优化AR模型处理结果 图 6

图7 优化后AR模型阶次曲线 Fig. 7 Order curve of the AR model after optimization

自相关峭度值最大时p=19,即为AR模型最优 阶次,此时AR模型处理结果如图8所示。

Fig. 8 AR model processing results after optimization

从图8可以看出,周期性分量和随机噪声得到 较好的抑制和消除,与滚动轴承故障特征阶次相关 的谱线可被有效识别,表明该方法能够有效提取滚 动轴承故障特征,实现故障诊断。对比图4,6与图8 仿真分析结果,验证了本文所提方法的有效性。

试验验证 4

4.1 试验介绍

为了验证所提方法的有效性,搭建如图9所示

图 9 试验台 Fig. 9 Experimental bench

的试验台,由电机、支撑轴承、故障轴承、轴向磁粉负 载以及径向加载器等组成。

试验研究中采用苏州广乐公司的光栅式编码 器,型号为SZGLK9040G2,线数为5000,加工的故 障轴承如图 10 所示(型号:NU206,节圆直径为 46 mm,滚动体直径约为9mm,滚动体个数为13,压力 角为0°)。

图 10 轴承外圈故障示意图 Fig. 10 Schematic diagram of bearing outer ring fault

通过线性切割方式加工宽度约为0.5 mm,深度 约为1mm的小槽来模拟滚动轴承外圈故障,其理 论故障特征阶次为5.23×,计算公式如下:

$$O_{\rm out} = \frac{Z}{2} \left(1 - \frac{d}{D} \cos \alpha \right) \tag{8}$$

式中 Z表示滚动体个数;d表示滚动体直径;D表 示滚动轴承节圆直径;α为接触角。

4.2 实测滚动轴承故障信号分析

使用高速计数器采集的原始编码器信号如图 11 所示(显示两万个数据点),图 12 是根据式(3)估 计计算并进行去均值处理得到的 IAS 信号(显示 10 圈数据)。观察图11和12,从图中无法提取与滚动

轴承外圈故障相关的有用信息。

图 13 为估计的原始 IAS 信号的包络阶次谱。 由图可见,转频阶次及其谐波能量占主导,与滚动轴 承故障相关的特征阶次难以被辨识。利用未进行优 化的 AR 模型处理试验信号,得到该条件下 AR 模型 预测阶次曲线,如图 14 所示。

图13 原始IAS信号包络阶次谱

Fig. 13 Raw IAS signal envelope order spectrum

Fig. 14 Order curve of the AR model without optimization

由图 14 可知,峭度值达到最大时阶次 p=8,即 未优化的 AR 模型最优阶次为 8,其处理结果如图 15 所示。

Fig. 15 AR model processing results without optimization

观察图15中的包络阶次谱,可以看出,对应的 滚动轴承外圈故障特征阶次受噪声干扰严重,难以 被辨识。

使用本文所提方法对同一原始IAS信号进行处

理,其AR模型阶次曲线如图16所示。

Fig. 16 Order curve of the AR model after optimization

由图16可知,当自相关峭度值达到最大值时, 其AR模型的最优阶次*p*=82,该条件下处理结果如 图17所示。

由图 17 可知,与滚动轴承外圈故障相关的特征 阶次谱线占优,周围存在的干扰完全不影响倍频的 辨识,表明所提方法可有效提取滚动轴承外圈故障 特征。

使用 FK 对 IAS 信号进行处理,最大分解级数 设置为7,快速谱峭度图如图 18 所示(最佳等级层数 *k* 为 2.5,中心频率 阶次 *O*。为 625×,带宽 *B*_w为 416×)。

对FK计算得到的中心频率及带宽确定的频带进行带通滤波后进行包络谱分析,其包络阶次谱如图19所示。由图可知,其他谱线干扰较为严重,与滚动轴承故障特征相关的阶次谱线并不占优,无法有效识别故障。对比图19与图17,验证了本文所提方法的有效性和优势。

4.3 振动分析对比验证

为验证本文方法结合IAS信号对滚动轴承故障

特征提取的正确性,将其与基于振动信号的文献[1] 所提方法进行验证对比。

图 20 为同一试验台采集(采样频率 f_s= 51.2 kHz)的振动信号时域波形。应用FK算法对采 集到的原始振动信号进行处理,最大分解级数设置 为7,快速谱峭度图如图 21 所示(最佳等级层数 k为 2.5,中心频率 f_c为 19200 Hz,带宽 B_w为 4266 Hz)。

为了更加直观地对比本文所提方法识别结果与 振动信号分析结果,对FK计算得到的中心频率及带 宽确定的频带进行带通滤波,并通过阶次跟踪(重采 样频率设置为2048点/转)将原始信号转换为角域信 号进行分析,图22为角域重采样信号的包络阶次谱。 对比图17可发现,图22阶次谱线结构与所提方法由 IAS信号提取的轴承外圈故障特征阶次吻合,表明了 所提方法的有效性和正确性。另外,本文方法提供 了一种基于IAS信号的滚动轴承故障诊断途径。

为验证本文方法的计算效率优势,研究中分别 利用IAS信号结合优化AR模型方法和基于振动信 号的文献[1]所提方法对204800个试验数据点进行 100次处理计算,结果如表1所示。可以看出,本文 方法较文献[1]方法计算效率提高了77.16%。

图 22 角域重采样信号包络阶次谱

Fig. 22 Enveloped order spectrum of an angular domain resampled signal

表1 计算效率对比 Tab.1 Computational efficiency comparison

处理方法	平均时间/s
本文方法	4.92
文献[1]方法	21.54

5 结 论

本文提出了一种优化AR模型的滚动轴承故障 IAS信号诊断方法。该方法具有以下优势:

(1) 基于有偏估计自相关良好的降噪功能,提高了AR模型的鲁棒性。与现有基于振动信号的 FK结合阶次分析方法相比,所提方法计算效率较高,具有一定实际工程应用价值。

(2)所提方法可用于基于IAS信号的滚动轴承 故障诊断,在振动传感器安装受限的场合具有一定 优势,为旋转机械设备的滚动轴承故障诊断提供了 另一种研究思路。

参考文献:

 [1] 张旭辉,张超,樊红卫,等.快速谱峭度结合阶次分析 滚动轴承故障诊断[J].振动、测试与诊断,2021,41
 (6):1090-1095.

ZHANG Xuhui, ZHANG Chao, FAN Hongwei, et al. Improved fault diagnosis of rolling bearing by fast kurtogram and order analysis[J]. Journal of Vibration, Measurement and Diagnosis, 2021, 41(6): 1090-1095.

- [2] AIMER A F, BOUDINAR A H, BENOUZZA N, et al. Induction motor bearing faults diagnosis using Root-AR approach: simulation and experimental validation
 [J]. Electrical Engineering, 2018, 100(3): 1555-1564.
- [3] PEETERS C, ANTONI J, LECLERE Q, et al. Multi-harmonic phase demodulation method for instantaneous angular speed estimation using harmonic weighting[J]. Mechanical Systems and Signal Processing, 2022, 167: 108533.
- [4] MOUSTAFA W, COUSINARD O, BOLAERS F,

et al. Low speed bearings fault detection and size estimation using instantaneous angular speed[J]. Journal of Vibration and Control, 2016, 22(15): 3413-3425.

- [5] 程卫东,刘东东,赵德尊.基于角域AR模型滤波的滚动轴 承故障诊断[J].振动、测试与诊断,2018,38(3):590-596.
 CHENG Weidong, LIU Dongdong, ZHAO Dezun.
 Bearing fault diagnosis based on AR model filtering in angle domain[J]. Journal of Vibration, Measurement and Diagnosis, 2018, 38(3): 590-596.
- [6] KLAUSEN A, ROBBERSMYR K G. Cross-correlation of whitened vibration signals for low-speed bearing diagnostics[J]. Mechanical Systems and Signal Processing, 2019, 118: 226-244.
- [7] KEDADOUCHE M, LIU Z H, THOMAS M. Bearing fault feature extraction using autoregressive coefficients, linear discriminant analysis and support vector machine under variable operating conditions[J]. Advances in Condition Monitoring of Machinery in Non-Stationary Operations, 2017, 9: 339-352.
- [8] 刘文朋,杨绍普,李强,等.一种增强的谱幅值调制方 法及其在复杂干扰下滚动轴承故障诊断中的应用[J]. 振动工程学报,2021,34(5):1064-1075.
 LIU W P, YANG S P, LI Q, et al. An enhanced spectral amplitude modulation method and its application to rolling element bearings fault diagnosis under complex interference[J]. Journal of Vibration Engineering, 2021,34(5):1064-1075.
- [9] CHEN Y Y, JIA M P, YAN X A. A bearing fault feature extraction method based on cepstrum pre-whitening

and a quantitative law of symplectic geometry mode decomposition[J]. Journal of Southeast University, 2021, 37(1): 33-41.

- [10] LI B, ZHANG X N, WU T T. Measurement of instantaneous angular displacement fluctuation and its applications on gearbox fault detection [J]. ISA Transactions, 2018, 74: 245-260.
- [11] MALIUK A S, PROSVIRIN A E, AHMAD Z, et al. Novel bearing fault diagnosis using Gaussian mixture model-based fault band selection[J]. Sensors, 2021, 21 (19): 6579.
- [12] OSORIO SANTANDER E J, SILVA NETO S F, VAZ L A, et al. Using spectral kurtosis for selection of the frequency bandwidth containing the fault signature in rolling bearings[J]. Marine Systems & Ocean Technology, 2020, 15(4): 243-252.
- [13] 石林锁,沈金伟,张亚洲,等.基于AR模型和谱峭度 法的滚动轴承故障诊断[J].振动与冲击,2011,30 (12):257-260.
 SHILS, SHENJW, ZHANGYZ, et al. Fault diagnosis of a rolling element bearing based on AR model and spectral kurtosis[J]. Journal of Vibration and Shock, 2011, 30(12): 257-260.
- [14] BOURDON A, RÉMOND D, CHESNÉ S, et al. Reconstruction of the instantaneous angular speed variations caused by a spall defect on a rolling bearing outer ring correlated with the length of the defect[J]. Advances in Condition Monitoring of Machinery in Non-Stationary Operations, 2014, 5: 335-345.

Instantaneous angular speed signal based rolling bearing fault diagnosis method by optimized AR model

ZHU Yun-gui, GUO Yu, CHEN Xin, YANG Xin-min, ZOU Xiang

(Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China)

Abstract: To address the issue of carrying rolling element bearing (REB) fault diagnosis where the conventional vibration sensor is difficult to install, an instantaneous angular speed (IAS) signal based REB fault diagnosis method by optimized AR model is proposed. The forward differential method is used to calculate and estimate the instantaneous angular speed signal. Then, the biased estimation autocorrelation analysis is used to determine the optimal order p by the maximum autocorrelation kurtosis. Periodic components in the IAS signal are removed by AR prediction, and the residual components containing rich bearing fault information are remained. The residual components are pre-whitened to equalize the importance of each band and to extract fault characteristics from the envelope. Simulation signal and outer ring data from a test rig validate the effectiveness of the proposed method. The experimental comparative analysis results show that the calculation efficiency is improved significantly when compared to the existing method of fast spectral steepness combined with order analysis based on vibration signal.

Key words: fault diagnosis; rolling bearing; AR model; biased estimation; IAS signal

作者简介:朱云贵(1996一),男,硕士研究生。E-mail: zyg1232020@163.com。 通讯作者:郭 瑜(1971一),男,博士,教授,博士生导师。E-mail: kmgary@163.com。